Tech Library
Applications & Cases
Dez. 2022
[Application Note]
In recent years, wireless audio has become more commonplace and even the norm in many of our everyday products. The use of network audio, which does not use conventional media sources such as compact discs (CDs), is also expanding due to the increase in sound source data from high-resolution audio and subscription-based music distribution services. New audio usage is often centered on smartphone-based services that provide audio through the smartphone to speakers and earbuds [earphones, earpods, etc.] via Bluetooth connectivity. These two use cases for audio output have come to dominate.
The recent mass implementation of True Wireless Stereo (TWS) within earbuds, with their comfortable cable-free non-tangling fit, has yielded vastly improved sound quality over traditional Bluetooth audio technology. TWS also comes with the ability to cancel external noise (isolation) which results in quieter playback. This feature allows users to use TWS-based devices without concerns of the sound being “broadcasted” to surrounding areas.
Additionally, Bluetooth connected speakers, which also do not require cables for signal transmission, allow for unfettered placement of playback devices and speakers. These mobile speakers, with their built-in amplifiers, can operate on battery power and be completely portable.
Bluetooth enabled audio devices are easy to use, easy to connect to and have many advantages. However, since they require a wireless signal, they can be susceptible to problems that do not occur with cable-connected audio devices.
This article describes phenomena that can cause problems within Bluetooth audio designs and will provide examples of potential countermeasures.
In recent years, wireless audio has become more commonplace and even the norm in many of our everyday products. The use of network audio, which does not use conventional media sources such as compact discs (CDs), is also expanding due to the increase in sound source data from high-resolution audio and subscription-based music distribution services. New audio usage is often centered on smartphone-based services that provide audio through the smartphone to speakers and earbuds [earphones, earpods, etc.] via Bluetooth connectivity. These two use cases for audio output have come to dominate.
The recent mass implementation of True Wireless Stereo (TWS) within earbuds, with their comfortable cable-free non-tangling fit, has yielded vastly improved sound quality over traditional Bluetooth audio technology. TWS also comes with the ability to cancel external noise (isolation) which results in quieter playback. This feature allows users to use TWS-based devices without concerns of the sound being “broadcasted” to surrounding areas.
Additionally, Bluetooth connected speakers, which also do not require cables for signal transmission, allow for unfettered placement of playback devices and speakers. These mobile speakers, with their built-in amplifiers, can operate on battery power and be completely portable.
Bluetooth enabled audio devices are easy to use, easy to connect to and have many advantages. However, since they require a wireless signal, they can be susceptible to problems that do not occur with cable-connected audio devices.
This article describes phenomena that can cause problems within Bluetooth audio designs and will provide examples of potential countermeasures.
Applications & Cases
Nov. 2022
[Application Note]
TDK offers a full suite of sensors that are perfectly suited for drones of all types from consumer/prosumer models to industrial units.
 
In just a few years, drones have become indispensable in one application after another, including such diverse areas as agriculture, real estate and cinematography. For all this success, drones still have almost unlimited potential given their suitability for a wide variety of uses including delivery, inspection, search & rescue, monitoring, and mapping, to name just a few.
 
Fundamental to drone utility is sensor technology. Drones rely on diverse sets of sensors for two broad purposes. First for their own functionality, notably flight and navigation, and second, for their ancillary capabilities – cameras for vision, motion detectors to sense activity, heat sensors to detect temperature, and so on.
TDK offers a full suite of sensors that are perfectly suited for drones of all types from consumer/prosumer models to industrial units.
 
In just a few years, drones have become indispensable in one application after another, including such diverse areas as agriculture, real estate and cinematography. For all this success, drones still have almost unlimited potential given their suitability for a wide variety of uses including delivery, inspection, search & rescue, monitoring, and mapping, to name just a few.
 
Fundamental to drone utility is sensor technology. Drones rely on diverse sets of sensors for two broad purposes. First for their own functionality, notably flight and navigation, and second, for their ancillary capabilities – cameras for vision, motion detectors to sense activity, heat sensors to detect temperature, and so on.
Applications & Cases
Aug. 2022
[Application Note]
High energy, reliable and volumetric efficient inverters are essential to reducing emissions of vehicles based on 48 V technology. DC-link capacitors can significantly contribute to this target by reducing parasitic losses and increasing thermal efficiency. High inverter powers can be theoretically achieved with multiple capacitor connections. However, a high number of parallel-connected parts also increase the complexity of the system stability. In the field of Aluminum Electrolytic Capacitors, the Hybrid Polymer technology offers higher ripple current densities by a factor of, e.g., 5x compared to standard Liquid Electrolyte technology. By applying the Hybrid Polymer technology to the large axial capacitor can sizes, with solid mechanical construction and special thermal dissipation feature, a compact DC-link solution with a reduced amount of capacitor and minimized thermal escalation risk through stable and efficient thermal design can be achieved.
High energy, reliable and volumetric efficient inverters are essential to reducing emissions of vehicles based on 48 V technology. DC-link capacitors can significantly contribute to this target by reducing parasitic losses and increasing thermal efficiency. High inverter powers can be theoretically achieved with multiple capacitor connections. However, a high number of parallel-connected parts also increase the complexity of the system stability. In the field of Aluminum Electrolytic Capacitors, the Hybrid Polymer technology offers higher ripple current densities by a factor of, e.g., 5x compared to standard Liquid Electrolyte technology. By applying the Hybrid Polymer technology to the large axial capacitor can sizes, with solid mechanical construction and special thermal dissipation feature, a compact DC-link solution with a reduced amount of capacitor and minimized thermal escalation risk through stable and efficient thermal design can be achieved.
Applications & Cases
Aug. 2022
[Application Note]
Service robots play an increasingly vital role in society, from transportation and warehouse logistics to home entertainment and security. Regardless of their application, they need to sense changes in their surroundings in real-time to ensure safety while providing a positive user experience. To illustrate how various sensor technologies from TDK’s SmartSensor family can be applied in service robots, this article focuses on a robotic vacuum cleaner (RVC).
Early versions of robotic vacuums had very little intelligence, randomly bumping their way around the home and sometimes missing areas as they did not know where they had been. Often, they would unwittingly become trapped or run out of charge mid-sweep. And, as their dust box is comparatively small to a regular vacuum cleaner, if full, they could be sweeping but not collecting anything up. Over the years, with the innovative use of sensors and motor controllers, vacuum cleaning robots have become much smarter, overcoming these issues.
Service robots play an increasingly vital role in society, from transportation and warehouse logistics to home entertainment and security. Regardless of their application, they need to sense changes in their surroundings in real-time to ensure safety while providing a positive user experience. To illustrate how various sensor technologies from TDK’s SmartSensor family can be applied in service robots, this article focuses on a robotic vacuum cleaner (RVC).
Early versions of robotic vacuums had very little intelligence, randomly bumping their way around the home and sometimes missing areas as they did not know where they had been. Often, they would unwittingly become trapped or run out of charge mid-sweep. And, as their dust box is comparatively small to a regular vacuum cleaner, if full, they could be sweeping but not collecting anything up. Over the years, with the innovative use of sensors and motor controllers, vacuum cleaning robots have become much smarter, overcoming these issues.
Applications & Cases
März. 2022
[Application Note]
The demand for higher data rates at the edge has increased significantly. The adoption of cameras and video system has increased driven by the reduced footstep of these systems and their usage for safety, security and quality applications. Other systems like high-speed data logging devices, embedded web servers and monitoring systems require a timely data transmission.
In addition, the number of nodes in networks are constantly increasing therefore the desire to use an existing ecosystem is strong. Ethernet protocol and security layers as well as well-known installation, maintenance and management processes result in a lower Total Cost of Ownership (TCO) and a better Return on Investment (ROI) in the Network.
Industrial applications focus on a network speed of 10 Mbps as this should address the data rate and reach for most of the existing fieldbus applications. TDK offers an extensive lineup of various inductors for use in 10Base-T1L applications including common-mode chokes (CMCs), isolation inductors (Isolated Coupled Inductors) and differential mode inductors (DMIs).
The demand for higher data rates at the edge has increased significantly. The adoption of cameras and video system has increased driven by the reduced footstep of these systems and their usage for safety, security and quality applications. Other systems like high-speed data logging devices, embedded web servers and monitoring systems require a timely data transmission.
In addition, the number of nodes in networks are constantly increasing therefore the desire to use an existing ecosystem is strong. Ethernet protocol and security layers as well as well-known installation, maintenance and management processes result in a lower Total Cost of Ownership (TCO) and a better Return on Investment (ROI) in the Network.
Industrial applications focus on a network speed of 10 Mbps as this should address the data rate and reach for most of the existing fieldbus applications. TDK offers an extensive lineup of various inductors for use in 10Base-T1L applications including common-mode chokes (CMCs), isolation inductors (Isolated Coupled Inductors) and differential mode inductors (DMIs).