BEFORE USING THE POWER SUPPLY UNIT

Be sure to read this instruction manual thoroughly before using this product. Pay attention to all cautions and warnings before using this product. Incorrect usage could lead to an electrical shock, damage to the unit or a fire hazard.

⚠️ DANGER

- Never use this product in locations where flammable gas or ignitable substances are present.

⚠️ WARNING

- Do not touch this product or its internal components while it is in operation, or within 5 seconds of shut down. There may be high voltage or high temperature present and you may receive an electric shock or burn.
- When the product is operating, keep your hands and face away from it as you may be injured by flying debris in the event of a fault.
- Do not make unauthorized changes to this product, otherwise you may receive an electric shock and void your warranty.
- Do not use this product in the event of the emission of smoke or abnormal smell and sound etc. It might lead to fire and/or electric shock. In such cases, please contact us. Do not attempt repair by yourself, as it is dangerous for the user.
- Do not operate these products in the presence of condensation. It might lead to fire and/or electric shock.

⚠️ CAUTION

- This power supply is designed for use within an end product such that it is accessible to SERVICE ENGINEERS only.
- Confirm connections to input/output terminals and signal terminals are correct as indicated in the instruction manual before switching on.
- Input voltage, Output current, Output power, ambient temperature and ambient humidity should be kept within specifications, otherwise the product will be damaged.
- Do not operate and store this product in an environment where condensation might occur. In such case, waterproof treatment is necessary.
- Do not use this product in environment with a strong electromagnetic field, corrosive gas or conductive substances.
- For applications which require very high reliability (Nuclear related equipment, traffic control equipment, etc.), it is necessary to provide a fail safe mechanism in the end equipment.
- The information in this document is subject to change without prior notice. Please refer to the latest version of the data sheet, etc., for the most up-to date specifications of the product.
- No part of this document may be copied or reproduced in any form without prior written consent of TDK-Lambda.
- Do not inject abnormal voltages into the output or signal of this product. The injection of reverse voltage or over voltage exceeding nominal output voltage into the output or signal terminals might cause damage to internal components.
- Operation of this product under over-current or short circuit conditions can result in damage. Failures of the product under these conditions have been assessed and are considered to be safe within the meaning of IEC/EN/UL/CSA 60950-1.
- This product contains a printed circuit board utilizing surface mounted devices. PCB stress such as bending, twisting etc could cause damage. Therefore, please handle with care.
- In order to maintain SELV output, the baseplate must be protectively earthed in the end application. Where the baseplate is not earthed, the output must be considered hazardous and must not be made user accessible.
- The output of this product may, under fault conditions, exceed SELV voltage limits. Therefore the output must be earthed in the end equipment to maintain SELV. If the output is not earthed, they must be considered hazardous and must not be made user accessible.
- These products have been assessed for use with non-isolated mains derived DC where the mains source is up to 115VAC. For mains derived DC above this source voltage, there must be isolation equivalent to reinforced insulation at the rated mains source voltage.
- The application circuits and their parameters are for reference only. Be sure to verify effectiveness of these circuits and their parameters before finalizing the circuit design.
- Use an HBC external fuse to each module to ensure safe operation and compliance with the Safety Standards to which it is approved.

Note: CE MARKING

CE Marking, when applied to a product covered by this handbook, indicates compliance with the low voltage directive.
Table of Contents

■ Block Diagram
■ Sequence Time Chart
■ Terminal Explanation
■ Explanations on Specifications
 1. Input Voltage Range
 2. Output Voltage Adjustment Range (TRM terminal)
 3. Maximum Output Ripple and Noise
 4. Maximum Line Regulation
 5. Maximum Load Regulation
 6. Baseplate Temperature vs. Output Voltage Drift
 7. Over Current Protection (OCP)
 8. Over Voltage Protection (OVP)
 9. Over Temperature Protection (OTP)
 10. Remote Sensing (+S, -S terminal)
 11. ON/OFF Control (CNT terminal)
 12. Parallel Operation (PC terminal)
 13. Series Operation
 14. Operating Ambient Temperature
 15. Operating Ambient Humidity
 16. Storage Ambient Temperature
 17. Storage Ambient Humidity
 18. Cooling Method
 19. Withstand Voltage
 20. Insulation Resistance
 21. Vibration
 22. Shock

■ Installation
 1. Mounting Method
 2. Heatsink Installation Method
 3. Regarding Vibration
 4. Recommended Soldering Condition
 5. Recommended Cleaning Condition

■ Before concluding power module damage
■ Block Diagram

- Vin
- Vin

Input Filter

Switching

Synchronous Rectifier

Output Filter

OCP

Bias Power Supply

ON/OFF Control

Control Circuit

Shut Down

Detector

+Vin

-Vin

CNT

PC

※: CN200A110-12,15,24 Model only

Switching frequency (fixed): 400kHz

※: Only CN200A110-12,15,24 Model only

※: Only 5V Model

※: Only 5V Model

※: Only 5V Model

※: Only 5V Model

+V

-V

TRM

+S

-S

■ Sequence Time Chart

5V Model: Latch type OVP & OCP
12.1-52.4V Models: Latch type OVP

OCP: 5V Model

OCP: 12.1-52.4V Models

OVP set point

OCP set point

OCP set point

Input Voltage

Vin

0V

Output Voltage

Vout

0V

Hi

Low

*1 ON/OFF Control

Input ON

Control OFF

Control ON

OVP trip

Control OFF

Control ON

OTP trip

Input OFF

Input ON

Input OFF

Input ON

OCP ON

LVP trip

Control OFF

Control ON

OCP ON

OCP reset

*1 Level: 4V ≤ Hi ≤ 35V or Open, 0V ≤ Lo ≤ 8V or Short
Terminal Explanation

(a) CN30,50,100A

[Input Side Terminals]
- Vin : -Input Terminal
CNT : ON/OFF Control Terminal
+ Vin : +Input Terminal

[Output Side Terminals]
- V : -Output Terminal
S : -Remote Sensing Terminal
TRM : Output Voltage Trimming Terminal
+ S : +Remote Sensing Terminal
+ V : +Output Terminal

Baseplate can be connected to FG (frame ground) M3 threaded holes.
Connect +Vin, -Vin, +V, -V with consideration of contacting resistance.

(b) CN200A

[Input Side Terminals]
- Vin : -Input Terminal
PC/NC : Output Current Balance Terminal
(CNT Terminal : 12,15,24V Models)
(CNT Terminal : 5V Model)
No Connection Terminal
CNT : ON/OFF Control Terminal
+ Vin : +Input Terminal

[Output Side Terminals]
- V : -Output Terminal
S : -Remote Sensing Terminal
TRM : Output Voltage Trimming Terminal
+ S : +Remote Sensing Terminal
+ V : +Output Terminal
Explanations on Specifications

1. Input Voltage Range
Input voltage range for CN-A110 Series is indicated below.

Input Voltage Range : 60 - 160VDC

Basically, ripple voltage (Vrpl) which results from rectification and filtering of commercial AC line is included within the input voltage as shown in Fig. 1-1. Ripple voltage must be limited within the voltage described below.

Allowable Input Ripple Voltage : 10Vp-p

When this value is exceeded, the output ripple voltage becomes large.
Note that sudden input voltage change may cause variation of output voltage transitionally.
Also, input voltage waveform peak value must not exceed above input voltage range.

![Fig.1-1 Input Ripple Voltage](image)

Basic Connection

![Fig.1-2 Basic Connection](image)

Input Fuse
This power module has no built-in fuse. Use external fuse to acquire various Safety Standards and to improve safety.

Also, use fast-blow type or nomal-blow type for every module. Furthermore, fuse must be connected to the +Vin side if –Vin side is used as ground, or fuse must be connected to –Vin side if +Vin side is used as a ground.

Input Fuse Recommended Current Rating:
- CN100A110 : DC400V and above , 5A
- CN30,50A110 : DC400V and above , 4A
- CN200A110 : DC400V and above , 10A

C1 :
To prevent the effect of input line inductance to the power module, connect electrolytic capacitor between +Vin and –Vin terminals.
Furthermore, use electrolytic capacitor with small ESR value. Especially take note that during line turn off at low ambient temperature, power module output will not normally shut down.

CN30,50,100A
Recommended Capacitor Value : 47 μF and above
(Voltage Rating 200V and above)

CN200A
Recommended Capacitor Value : 100 μF and above
(Voltage Rating 200V and above)

Notes
1. Use low impedance electrolytic capacitor with excellent temperature characteristics.
 - CN30,50,100A
 - (Nippon Chemi-con KMQ, KXJ Series or equivalent)
 - CN200A
 - (Nippon Chemi-con KXJ Series or equivalent)
2. When using at ~20 °C ambient temperature, connect capacitors as below to reduce equivalent series resistance.
 - CN30,50,100A
 - Use two capacitors (100 μF,100V) in series.
 - CN200A
 - Use two series capacitors (120 μF,100V) in two parallel.
 - (Nippon Chemi-con LXV Series or Nichicon PM Series or equivalent)
3. When input line inductance becomes excessively high due to insertion of choke coil, operation of the power module could become unstable. For this case, increase C1 value more than the value indicated above.
4. Take note of the maximum allowable ripple current of the electrolytic capacitor used. Especially, for sudden load current changes, verify actual ripple current and make sure that maximum allowable ripple current is not exceeded.

C2 : 2.2 μ F
To reduce spike noise voltage at the output, connect 2.2μF ceramic capacitor between +V and –V at 50mm distance from the output terminals. Also, take note that output spike noise voltage could vary according to PCB wiring design.

C3 :
For stable operation, connect a electrolytic capacitor between +V and –V at 50mm distance from the output terminals. Take note that output ripple could be affected by electrolytic capacitor, equivalent impedance and inductance characteristics of wiring. For cases of abrupt changes in load current or input voltage, increasing capacitance value of the external capacitors could reduce the voltage fluctuation.

Table 1-1 C3 Recommended Values of External Output Capacitor

<table>
<thead>
<tr>
<th>Voltage</th>
<th>CN30,50,100A</th>
<th>CN200A</th>
</tr>
</thead>
<tbody>
<tr>
<td>5V</td>
<td>10V, 1000μF</td>
<td>10V, 2200μF</td>
</tr>
<tr>
<td>12V</td>
<td>25V, 470μF</td>
<td>25V, 1000μF</td>
</tr>
<tr>
<td>15V</td>
<td>25V, 470μF</td>
<td>25V, 1000μF</td>
</tr>
<tr>
<td>24V</td>
<td>50V, 220μF</td>
<td>50V, 470μF</td>
</tr>
</tbody>
</table>

Notes
1. Use low impedance electrolytic capacitor with excellent temperature characteristics. (Nippon Chemi-con LXZ, LXY Series or equivalent)
2. Use more than two recommended capacitor above in parallel when ambient temperature becomes lower than –20°C to reduce ESR.
3. Take note of the allowable ripple current of the capacitor to be used. Especially, when load adding capacitors for abrupt current changes, be sure to verify that ripple current does not exceed allowable ripple current before use.

Reverse Input Connection
Reverse input polarity would cause module damage. For cases where reverse connections are possible, connect a protective diode and fuse. Use protective diode with higher voltage rating than the input voltage, and with higher surge current rating than the fuse.

Output Voltage Adjustment Range (TRM terminal)
Output voltage could be adjusted within the range described below by external resistor and variable resistor or applying external voltage. However, take note that OVP or LVP (5V Model only) might trigger when output voltage adjustment exceeds the ranges indicated below.

<table>
<thead>
<tr>
<th>Voltage</th>
<th>Adjustment Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>5V</td>
<td>–10% - +20% of Nominal Output Voltage</td>
</tr>
<tr>
<td>12V, 15V, 24V</td>
<td>–10% - +10% of Nominal Output Voltage</td>
</tr>
</tbody>
</table>

When increasing the output voltage, reduce the output current accordingly so as not to exceed the maximum output power. Take note that the output current when output voltage is decreased is maximum output current of specification. Remote sensing is possible even when output voltage is varied. For details on remote sensing function, please refer to “10.Remote Sensing”.

- 5 -
Output Voltage Adjustment by External Resistor or by Variable Resistor

(1) In case of adjusting output voltage lower
(1-1) Allowable maximum output current = maximum output current of specification.
(1-2) Connect an external resistor $R_{adj(down)}$ between the TRM terminal and $-S$ terminal.

$$
R_{adj(down)} = \left[\frac{100(\%)}{\Delta(\%)} - 2 \right] \Omega
$$

R_{adj} : External adjustment resistor
$\Delta(\%)$: Output voltage change rate against nominal output voltage

ex) When setting 5V Model to 4.5V output, $\Delta(\%)$ should be set at 10%.
Below graph is relation $\Delta(\%)$ and value of external resistor.

(2) In case of adjusting output voltage higher
(2-1) Allowable maximum output current = maximum output power ÷ output voltage. (reduce maximum output current specification.)
(2-2) Connect an external resistor $R_{adj(up)}$ between TRM terminal and $+S$ terminal.

$$
R_{adj(up)} = \left(\frac{V_o(100(\%)+\Delta(\%))}{1.225 \times \Delta(\%)} - \frac{100(\%)}{\Delta(\%)} \right) \Omega
$$

V_o : Nominal output voltage
R_{adj} : External adjustment resistor
$\Delta(\%)$: Output voltage change rate against nominal output voltage

ex) When setting 5V Model to 5.5V output, $\Delta(\%)$ should be set at 10%.
Below graph is relation $\Delta(\%)$ and value of external resistor.
(3) To adjust output voltage for whole range
Resistor values, as well as, connecting methods for external resistor (R1) and external variable resistor (VR) are described below.

<table>
<thead>
<tr>
<th></th>
<th>5V</th>
<th>12V</th>
<th>15V</th>
<th>24V</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>5.6k</td>
<td>5.6k</td>
<td>5.6k</td>
<td>5.6k</td>
</tr>
<tr>
<td>VR</td>
<td>2k</td>
<td>5k</td>
<td>5k</td>
<td>10k</td>
</tr>
</tbody>
</table>

unit: [Ω]

External resistor: ±5% Tolerance
External variable resistor: ±20% Tolerance
with end resistance below 1%

Table 2-1 Values of External Resistor and Variable Resistor

Table 2-1 Values of External Resistor and Variable Resistor

<table>
<thead>
<tr>
<th>Vo</th>
<th>5V</th>
<th>12V</th>
<th>15V</th>
<th>24V</th>
</tr>
</thead>
<tbody>
<tr>
<td>±10%</td>
<td>12V</td>
<td>15V</td>
<td>24V</td>
<td></td>
</tr>
<tr>
<td>±10%</td>
<td>5V</td>
<td>12V</td>
<td>15V</td>
<td></td>
</tr>
</tbody>
</table>

3. Maximum Output Ripple and Noise

Measured value according to the specified methods based on JEITA-9141 (Clause 7.12 and clause 7.13) which is described in the following.

Connect according to fig.3-1 and measure. Connect capacitors (C2 : ceramic capacitor, C3 : electrolytic capacitor) at 50mm distance from the output terminals. Measure at ceramic capacitor (C2) terminals as shown in fig. 3-1 using coaxial cable with JEITA attachment. Use oscilloscope with 100MHz frequency bandwidth or equivalent.

Fig.3-1 Measurement of Maximum Output Ripple and Noise

Take note that output ripple voltage and output spike noise may vary depending on PCB wiring design. Generally, increasing capacitance value of external capacitor can reduce output ripple voltage and output spike noise.

4. Maximum Line Regulation

Maximum value of output voltage change when input voltage is gradually varied (steady state) within specified input voltage range.

5. Maximum Load Regulation

Maximum value of output voltage change when output current is gradually varied (steady state) within specified output current range.

When using at dynamic load mode, audible noise could be heard from the power module and output voltage fluctuation might increase. A thorough pre-evaluation must be performed before using this power module.

6. Baseplate Temperature vs. Output Voltage Drift

Output voltage drift is defined as the rate of voltage change when only baseplate temperature is changed during operation.
7. Over Current Protection (OCP)
This power module has built-in OCP function. When output current is overload conditions, output voltage lowers. Output will recover when short circuit or overload conditions are released. OCP setting value is fixed and therefore, can not be externally adjusted.
Take note that power module might be damaged continuing output short circuit or over load conditions depending on thermal conditions.

For 5V Model Only
Take note, when output voltage drops down below lower side of adjustment range by output short circuit or over load conditions, output might be shut down. Output can be recovered by manual reset of the CNT terminal or by turning input line off and then turning it on again.

5V Model
OCP(shut down) release input voltage value : 45VDC and below

8. Over Voltage Protection (OVP)
This power module has built-in OVP function. OVP set point is relative to the rated output voltage value. When output voltage exceed OVP set point, output voltage shut down. OVP setting value is fixed and therefore, can not be externally adjusted.
When OVP is triggered, output can be recovered by manual reset of the CNT terminal or by turning input line off and then turning it on again.

OVP reset input voltage value : 45VDC and below
Verifying OVP function shall be done by increasing output voltage with external resistor. For verifying OVP function, avoid applying external voltage to output terminal because this will cause power module damage.

9. Over Temperature Protection (OTP)
This power module has built-in OTP function. This function operates and shuts down the output when ambient temperature or internal temperature of power module abnormally rises. OTP operates at 105°C to 120°C baseplate temperature.
OTP can be released when baseplate temperature drops down approximately to within 80°C to 95°C. However, take note that OTP will operate again unless the cause of abnormal heat of the power module is eliminated.

10. Remote Sensing (+S, –S terminal)
Remote sensing terminal is provided to compensate for voltage drop across the wirings from the power module output terminal to the load input terminal.
When remote sensing function is not used (local sensing), short +S terminal to +V terminal and, -S terminal to –V terminal.
When using remote sensing function, output power of power module should be within maximum output power. Also, use within maximum output adjustable voltage at output terminal.
When wire is long, Power Supply operation might be unstable due to noise. Moreover, please do enough prior evaluation for remote sensing function by using shielded wire, twist pair, or parallel pattern.

5V Model
OCP(shut down) release input voltage value : 45VDC and below

11. ON/OFF Control (CNT terminal)
Without turning the input supply on and off, the output can be enabled and disabled using this function. This function also can be used for output sequence of plural power modules.
ON/OFF control circuit is on the primary side (the input side). For secondary control, isolation can be achieved through the use of an opto-coupler or relay.

<table>
<thead>
<tr>
<th>CNT Terminal Level to -Vin Terminal</th>
<th>Output Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>H Level (4V ≤ H ≤ 35V) or Open</td>
<td>OFF</td>
</tr>
<tr>
<td>L Level (0V ≤ L ≤ 0.8V) or Short</td>
<td>ON</td>
</tr>
</tbody>
</table>

Table11-1 CNT Terminal Level
Notes
1. When ON/OFF control function is not used, CNT terminal should be shorted to –Vin terminal.
2. When using long wiring, for prevention of noise, attach a capacitor between CNT terminal and –Vin terminal.
3. At L level, maximum source current from CNT terminal to –Vin terminal is 0.5mA.
4. The maximum CNT terminal voltage is 35V.

12. Parallel Operation (PC terminal)
This terminal is available for CN200A110-12, 15 and 24 Models only. Do not use CN200A110-5, CN30A110, CN50A110 and CN100A110 in parallel operation.
Also, CN200A110 Series is not possible for N+1 parallel redundant operation.
By connecting the PC terminal of each power module, output current can be equally drawn from each power module. A maximum of 3 units of the same model can be connected.
Take care that the maximum power of each module should not be exceeded.
Also note that using OR diodes during parallel operation could cause power module malfunction.

Notes
1. Output voltage accuracy of each module should be set within ±1% when using in parallel operation.
2. Maximum output current of each module should be derated at 90% or less.
3. Use the same type, length and diameter of wire for each module when using in parallel operation.
13. Series Operation

Series operation is possible for CN-A110 series. Connections shown fig. 13-1 and fig. 13-2 are possible.

Fig.13-1 Series Operation due to High Output Voltage

Fig.13-2 Series Operation due to ± Output

14. Operating Ambient Temperature

There is no restriction on mounting direction but there should be enough consideration for airflow so that heat does not accumulate around the power module vicinity.

Determine external components configuration and mounting direction on PCB such that air could flow through the heatsink at forced cooling and conventional cooling.

By maintaining actual baseplate temperature below 100°C, operation is possible. For details on thermal design, refer to Application Notes “Thermal Design”.

Note:

Maximum baseplate temperature is 100°C. For worst case operating condition, verify baseplate temperature at measurement point indicated in fig. 14-1.

15. Operating Ambient Humidity

Take note that moisture could lead to power module abnormal operation or damage.

16. Storage Ambient Temperature

Please note that sudden temperature changes can cause condensation buildup, and other harmful affects to each terminal solder.

17. Storage Ambient Humidity

Take enough care when storing the power module because rust which causes poor solderability would form in each terminal when stored in high temperature, high humidity environment.
18. Cooling Method
Operating temperature range is specified by the baseplate temperature. Therefore, several methods of heat dissipation are possible.
For details on thermal design, refer to Application Notes “Thermal Design”.

19. Withstand Voltage
This power module is designed to have a withstand voltage of 3kVAC between input and output, 2kVAC between input and baseplate and 500VAC between output and baseplate for 1 minute.
When conducting withstand voltage test during incoming inspection, set the current limit value of the withstand voltage testing equipment to 10mA.
Furthermore, avoid throw in or shut off of the testing equipment when applying or when shut down the test voltage. Instead, gradually increase or decrease the applied voltage. Take note especially not to use the timer of the test equipment because when the timer switches the applied voltage off, impulse voltage which has several times the magnitude of the applied voltage is generated causing damage to the power module.

Connect the terminals as shown in the diagram below.

* Fig.19-1 to Fig.19-3 PC/NC terminal available only for CN200A Model.

Withstand Voltage Testing with Attached External Application
The above Withstand Voltage Testing specification applies only to power module as stand-alone unit. Please take note of the following points when Withstand Voltage Testing is performed with attached external application.
For applications that require capacitor connections between input – FG and output – FG as shown in Fig. 19-4, set capacitor ratio of input – FG capacitor (C4, C5) and output – FG capacitor (C6, C7) as shown below, in order to satisfy 3kVAC Withstand Voltage Testing for input – output.

• CN30,50,100A
 Capacitor ratio of Input – FG (C4, C5) and Output – FG (C6, C7)
 C4, C5 : C6, C7 = 1 : 1.3 – 1.5

• CN200A
 Capacitor ratio of Input – FG (C4, C5) and Output – FG (C6, C7)
 C4, C5 : C6, C7 = 1 : 1.0 – 2.0

Fig.19-4 Example of connecting external application
20. Isolation Resistance

Use DC insulation tester (MAX 500V) between output and baseplate. Insulation resistance value is 100MΩ and above at 500VDC applied voltage. Make sure that during testing, the isolation testers do not produce a high pulse when the applied voltage is varied.

Ensure that the tester is fully discharged after the test.

![Isolation Test Diagram](image)

Over 100MΩ at 500VDC

* Fig.20-1 Isolation Test

* Fig.20-1 PC/NC terminal available only for CN200A Model.

21. Vibration

Vibration of power module is defined in case of mounting on printed circuit board.

For details, refer to “Mounting Method”.

22. Shock

Withstand shock value is defined to be the value at TDK-Lambda shipment and packaging conditions.
1. Mounting Method
By the following instruction shown in Fig.1-1, mount power module onto printed circuit board.

(1) Method to Fix
To fix a power module onto printed circuit board, use M3 screws and mount it to the M3 threaded holes of the power module. Recommended torque is 0.54N·m.

(2) Mounting Holes
Mounting holes of the power module are connected to baseplate. Connect baseplate to FG (Frame Ground) by using this mounting holes.

(3) Mounting Holes on Printed Circuit Board
Refer to the following sizes when determining diameter of hole and land diameter of printed circuit board.

Input / Signal terminals (\(\phi 1.0 \text{ mm} \))
- Hole diameter : \(\phi 1.5 \text{ mm} \)
- Land diameter : \(\phi 2.5 \text{ mm} \)

Output terminals
- CN30,50,100A (\(\phi 1.5 \text{ mm} \))
 - Hole diameter : \(\phi 2.0 \text{ mm} \)
 - Land diameter : \(\phi 3.5 \text{ mm} \)
- CN200A (\(\phi 2.0 \text{ mm} \))
 - Hole diameter : \(\phi 2.5 \text{ mm} \)
 - Land diameter : \(\phi 5.0 \text{ mm} \)

Mounting Holes (FG)
- Hole diameter : \(\phi 3.5 \text{ mm} \)
- Land diameter : \(\phi 7.0 \text{ mm} \)

For position of the holes, see outline drawing of the power module.

(4) Recommended Material of PCB
Recommended materials of the printed circuit board is double sided glass epoxy with through holes.
(thickness t:1.6mm, copper 35 \(\mu \text{m} \)).

(5) Input / Output Pattern Width
Large current flows through input and output pattern. If pattern width is too narrow, heat on pattern will increase because of voltage drop of pattern. Relationship between allowable current and pattern width varies depending on materials of printed circuit board, thickness of conductor. It is definitely necessary to confirm on manufacturers of printed circuit board for designing pattern.
2. Heatsink Installation Method

(1) Method of Fixing Heatsink
To fix the heatsink onto power module, use M3 screws and mount it to the M3 threaded holes (2 places or 4 places depending on the package size) at the baseplate side. Recommended torque is 0.54 Nm.

Use silicone grease or thermal conductive sheet in between heatsink and baseplate to minimize the contact thermal resistance and to enhance the heat conductivity.
Also use the no-warped heatsink and make sure good contact between baseplate and heatsink.

(2) Mounting Hole of Heatsink
Recommended mounting hole is as follows.
φ 3.5 Non-threaded hole

3. Regarding Vibration
The vibration specification of the module is determined assuming that only the power module is mounted on printed circuit board. To prevent excessive force to the module and the printed circuit board, fix the heatsink to the chassis as well as to the module when a large size of heatsink is used.

4. Recommended Soldering Condition
Recommended soldering conditions are as follows.

(1) Soldering dip
Dip condition : 260°C within 10 seconds
Pre-heat condition : 110°C for 30 - 40 seconds

(2) Soldering iron
350°C within 3 seconds
※Soldering time changes according to heat capacity of soldering iron, pattern on printed circuit board, etc. Please confirm actual performance.

5. Recommended Cleaning Condition
Recommended cleaning condition after soldering is as follows.

(1) Cleaning solvent
IPA (isopropyl alcohol)

(2) Cleaning Procedure
Use brush and dry the solvent completely.
Before concluding power module damage

Verify following items before concluding power module damage.

1) No output voltage
 - Is specified input voltage applied?
 - Are the ON/OFF control terminal (CNT), remote sensing terminal (+S, –S), output voltage trimming terminal (TRM) correctly connected?
 - For cases where output voltage adjustment is used, is the resistor or variable resistor setting, connections correctly done?
 - Are there no abnormalities in the output load used?
 - Is the baseplate temperature within the specified temperature range?

2) Output voltage is high
 - Are the remote sensing terminals (+S, –S) correctly connected?
 - Is the measurement done at the sensing points?
 - For cases where output voltage adjustment is used, is the resistor or volume setting, connections correctly done?

3) Output voltage is low
 - Is specified input voltage applied?
 - Are the remote sensing terminals (+S, –S) correctly connected?
 - Is the measurement done at the sensing points?
 - For cases where output voltage adjustment is used, is the resistor or variable resistor setting, connections correctly done?
 - Are there no abnormalities in the output load used?

4) Load regulation and line regulation is large
 - Is specified input voltage applied?
 - Are the input terminals and the output terminals firmly connected?
 - Is the measurement done at the sensing points?
 - Is the input or output wire too thin?

5) Output ripple voltage is large
 - Is the measuring method used the same or equivalent with the specified method in the Application Notes?
 - Is the input ripple voltage value within the specified value?