
# TPF45000-385 POWER SUPPLY OPERATION MANUAL



| ⚠ GENERAL SAFETY INSTRUCTIONS        | 2  |
|--------------------------------------|----|
| High Voltage Warning                 |    |
| Critical Components                  | 2  |
| Servicing                            |    |
| Safety Class of Protection           |    |
| Installation                         |    |
| Ratings, Specifications and Features | 4  |
| Emissions                            | 4  |
| Immunity                             | 4  |
| Maximum Ratings                      |    |
| Input Specifications                 | 5  |
| Output Performance Specifications    | 6  |
| Protective Functions                 | 6  |
| Operating Modes                      | 6  |
| Status Indicators                    | 7  |
| Remote Control Features              |    |
| PMBus Features                       | 8  |
| Input, Output and Signal Connections |    |
| Small Signal Connector               | 9  |
| I <sup>2</sup> C Bus Port            | 9  |
| Ripple and Noise Notes               | 11 |
| Mechanical Drawing                   | 12 |
| PMBus <sup>™</sup> Interface         | 13 |
|                                      |    |

# TPF45000-385 POWER SUPPLY OPERATION MANUAL

# $\triangle$ GENERAL SAFETY INSTRUCTIONS

## **High Voltage Warning**

Dangerous voltages are present within the power supply.

## **Critical Components**

This product is not authorized for use as a critical component in nuclear control systems, life support systems or equipment for use in hazardous environments without the express written approval of the Engineering Director of TDK-Lambda Americas.

## Servicing

This product is not customer serviceable. Unit repairs shall only be carried out by TDK- Lambda Americas or their Authorized agents.

Contact: TDK-Lambda Americas 401 Mile of Cars Way, Suite 325 National City, CA 91950 Tel 619-575-4400 Fax 619-575-7185

### **Safety Class of Protection**

The unit is designed for the following parameters: Material Group IIIb, Pollution Degree 2, Overvoltage Category II, Class 1 (earthed), Indoor use. The unit is considered as fixed and rated IPX0. The TPF45000-385 are capable of providing hazardous energy (>240VA). The final equipment should provide protection to service personnel against inadvertent contact with the PSU output terminals.

### Installation

This product is designed for use within other equipment which restricts access to Authorized competent personnel only. The unit covers/chassis must not be made user accessible.

The mains input connector is not acceptable for use as field wiring terminals.

The appliance must be securely mounted and the Ground Stud properly bonded to the main protective earth contact before any connection to AC mains supply is made.

The ventilation openings must not be impeded – ensure a space at least 5cm between any obstruction and the ventilation openings.

## **BEFORE USING THE POWER SUPPLY UNIT**

Be sure to read this instruction manual thoroughly before using this product. Pay attention to all cautions and warnings before using this product. Incorrect usage could lead to an electrical shock, damage to the unit or a fire hazard.

# **▲ DANGER**

• Never use this product in locations where flammable gas or ignitable substances are present.

# **▲**WARNING

• Do not make unauthorized changes to power supply unit, otherwise you might have electric shock and void your warranty.

• Do not touch this unit and the internal components in operation or shortly after shut down. They might have high voltage or high temperature and as the unit dissipates its heat so the surface of the unit is hot. You might receive electric shock or burn.

• When the unit is operating, keep your hands and face away from it; you might be injured by an accident.

• Do not use unit under unusual conditions such as emission of smoke or abnormal smell and sound etc. It might cause fire and electric shock. In such case, please contact us; do not repair by yourself, as it is dangerous for the user.

- Do not drop or insert anything into unit. It might cause failure and fire.
- Do not operate these units under condensation condition. It might cause fire and electric shock.

## TPF45000-385 POWER SUPPLY OPERATION MANUAL

# **A**CAUTION

• As a component part, compliance with the standard will be based upon installation in the final application. This product must be installed in a restricted access location, accessible to authorized competent personnel only. The outputs of these products are energy hazards. The equipment has been evaluated for use in a Pollution Degree 2 environment.

• This product is designed for use within other equipment or enclosures which restrict access to authorized competent personnel only and must not be user accessible. Confirm connections to input/output terminals and signal terminals are correct as indicated in the instruction manual.

• Input voltage, Output current, Output power, ambient temperature and ambient humidity should be used within specifications, otherwise the unit will be damaged.

• For application equipment, which requires very high reliability (Nuclear related equipment, traffic control equipment, medical equipment, etc.), please provide fail safety function in the equipment.

• Do not use the product in environment with strong electromagnetic field, corrosive gas and conductive substance.

• Do not operate and store this unit at an environment where condensation occurs. In such case, waterproof treatment is necessary

• Never operate the unit under over current or shorted conditions for 30 seconds or more and out of Input Voltage Range as specification. Insulation failure, smoking, burning or other damage might occur to the unit.

• The output voltage of this power supply unit is considered to be a hazardous energy level (The voltage is 2V or more and the electric power is 240VA or more). Prevention from direct contact with output terminal is highly necessary. While installing or servicing this power supply unit, avoid dropping tools by mistake or direct contact with output terminal. This might cause an electrical shock. While repairing this power supply unit, the AC input power must be switched off and the input and output voltage should be level.

• The application circuits and their parameter are for reference only. Be sure to verify effectiveness of application circuits and their parameters before finalizing circuit design.

• Do not inject abnormal voltage to output terminal and signal terminal from the outside. The injection of reverse voltage or over voltage exceeding nominal output voltage to output terminals might cause damage to internal components.

• This information in this document is subject to change without prior notice. For actual design-in, please refer to the latest publications of data sheet, etc., for the most up-to date specifications of the unit.

**Note: CE Marking**, when applied to a product or packing material for a product covered by this handbook, indicates compliance with the Low Voltage Directive and RoHS Directive.

**Note: UKCA Marking**, when applied to a product or packing material for a product covered by this handbook, indicates compliance with the Electrical Equipment (Safety) Regulations and Restriction of the Use of Certain Hazardous Substances in Electrical & Electronic Equipment Regulations.



# **Ratings, Specifications and Features**

| Emissions                      |                                         |                                                                                                                                                                                                                                                                              |
|--------------------------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AC Line Conducted Emissions    | EN 55032:2015                           | (0.15-30 MHz) Class A with external filter *                                                                                                                                                                                                                                 |
| Radiated RF Emissions          | EN 55032:2015                           | 0-1000 MHz Class A with external filter *                                                                                                                                                                                                                                    |
| Immunity                       | ·                                       |                                                                                                                                                                                                                                                                              |
| Electrostatic Discharge        | IEC61000-4-2: 2008                      | +/-8 kV Air<br>+/-4 kV Contact                                                                                                                                                                                                                                               |
| RF Radiated Fields             | EN 61000-4-3: 2006<br>+A1:2008 +A2:2010 | 3 V/m from 80-1000 MHz;<br>(80% AM at 1kHz)                                                                                                                                                                                                                                  |
| Electrical Fast Transients     | EN61000-4-4: 2004+A1:2010               | Power line pulses of $\pm$ 1 kV;<br>I/O line pulses of $\pm$ 0.5 kV                                                                                                                                                                                                          |
| Lightning Surge                | IEC61000-4-5: 2005                      | ±4kV common mode<br>±2kV differential mode                                                                                                                                                                                                                                   |
| Conducted RF Common Mode       | EN61000-4-6: 2009                       | 150 kHz - 80 MHz at 3 Vrms<br>1 kHz 80% amplitude modulated                                                                                                                                                                                                                  |
| Power Frequency Magnetic Field | IEC61000-4-8:2009                       | 30A/m (Continuous), 300A/m (Short)                                                                                                                                                                                                                                           |
| Voltage Dips/Short Variations  | IEC61000-4-11:2004                      | Dip to 0% of nom. line for 0.5 cycles - Criteria C<br>Dip to 0% of nom. line for 1 cycles - Criteria C<br>Dip to 40% of nom. line for 0.2 seconds - Criteria C<br>Dip to 70% of nom. line for 0.5 seconds - Criteria C<br>Dip to 80% of nom. line for 5 seconds - Criteria C |
| Voltage Dips/Short Variations  | SEMI F47-0706                           | Dip to 50% of nom. line for 10 cycles - Criteria C<br>Dip to 70% of nom. line for 25 cycles - Criteria C<br>Dip to 80% of nom. line for 50 cycles - Criteria C                                                                                                               |

Table 1

\*With appropriate installation

# TPF45000-385 POWER SUPPLY OPERATION MANUAL

## **Maximum Ratings**

| Maximum Katings                               |       |                |
|-----------------------------------------------|-------|----------------|
|                                               | Units |                |
| Output Voltage Range                          | V     | 385            |
| Rated Output Current (Power) <sup>1</sup>     | A(W)  | 110 (42000)    |
| Maximum Output Current (Power) <sup>1,2</sup> | A(W)  | 116 (45000)    |
| Maximum Output Power with Dropped Phase       | W     | 15000W         |
| Minimum Load – Unit Enabled                   | А     | 0.5A (200W)    |
| Minimum Load – Unit Inhibited <sup>3</sup>    | Ω     | 50             |
| Operating Temperature                         |       | -10°C to 50°C. |
| Start-up Temperature                          | °C    | -20°C to +50°C |

Table 2

<sup>1</sup> Load needs to remain off until the output voltage has reached 370VDC. If a load is drawn before the output has reached an appropriate voltage, the unit may go into a fault mode and shutdown. The DCOK signal will start to conduct when the output voltage has reached the appropriate level.

<sup>2</sup> Maximum output current (Power) allowable between 380VAC and 504VAC input.

<sup>3</sup>Critical Note: If minimum load is not present while the unit is inhibited, the output can slowly be charged to unsafe levels. DO NOT remove output load connectors while unit is inhibited. Turn off AC input voltage before removing output connectors.

| Input Specifications                                                  |       |                                                                                          |
|-----------------------------------------------------------------------|-------|------------------------------------------------------------------------------------------|
|                                                                       | Units |                                                                                          |
| Input Voltage (nominal)                                               |       | VAC 400/480 (50/60Hz) Three Phase Delta                                                  |
| Input Voltage (threshold)                                             |       | VAC 360-528VAC (47-63Hz) Three Phase Delta,<br>VAC 208-305VAC (47-63Hz) Three Phase Wye, |
| Input Current (RMS) Per Phase<br>400-480VAC input                     | А     | 75A @ 400VAC / 65A @ 480VAC (per phase)                                                  |
| Inrush Current (Peak, at cold start)<br>Per Phase, 400-480VAC input * | А     | Less than 150A per phase                                                                 |
| Power Factor (at rated output power)                                  | -     | 0.94 typical @ 400/480VAC line                                                           |
| Input EMI Conducted Emissions                                         | -     | FCC Class A, CISPR 22 Class A                                                            |
| Efficiency (at rated output power)                                    | %     | 98 typical @ 400/480VAC line                                                             |

\*excluding initial spike charging EMI capacitors lasting <2mS



| Output Performance Specifications          |        |                                                                                  |
|--------------------------------------------|--------|----------------------------------------------------------------------------------|
|                                            | Units  |                                                                                  |
| Max Voltage Line Regulation                | %      | Less than 2%                                                                     |
| Max Voltage Load Regulation                | %      | Less than 3%                                                                     |
| Total Regulation                           | %      | Less than 8%                                                                     |
| Warm up Drift                              | %      | Less than 3%                                                                     |
| Temperature Stability                      | -      | 0.2% of rated Vout for 8hrs after 30min warm-<br>up. Constant line, load & temp. |
| Temperature Coefficient                    | ppm/°C | 400ppm/C                                                                         |
| Output Ripple, JEITA RC-9131C <sup>4</sup> | Vrms   | <10                                                                              |
| Remote Sense Compensation (Total)          | V      | Not applicable                                                                   |
|                                            | •      | Table 4                                                                          |

<sup>4</sup>See Ripple and Noise Notes for Details on Jeita RC-9131C method; All Three Phases present

| Protective Functions  |       |                                                                                                                  |
|-----------------------|-------|------------------------------------------------------------------------------------------------------------------|
|                       | Units |                                                                                                                  |
| OCP TYPE              | -     | Foldback with delayed shutdown (latch). Manual reset by input cycling or remote control via the PMBus Interface. |
| OCP KNEE POINT        | -     | >116A                                                                                                            |
| KNEE POINT PROTECTION | -     | NONE. NO DAMAGE AT KNEE POINT                                                                                    |
| S/C PROTECTION        | -     | DAMAGE occurs if shorted during live operation. Will protect itself if started into a short circuit.             |
| OVP TYPE              | -     | Latched shutdown. Manual reset by input cycling or remote control via the PMBus Interface.                       |
| OVP RANGE             | -     | 395 +5/-1V                                                                                                       |
| OVP RESET TIME        | S     | Not applicable                                                                                                   |
| FAN FAIL              | -     | Blocked fan and fan failure detection. Manual reset by input cycling or remote control via the PMBus Interface.  |
| OTP                   | -     | Latch type. Manual reset by input cycling or remote control via the PMBus Interface.                             |

Table 5

| Operating Modes    |    |  |
|--------------------|----|--|
| Series Operation   | No |  |
| Parallel Operation | No |  |



| Status Indicators |                                                                                                 |
|-------------------|-------------------------------------------------------------------------------------------------|
| DC OK             | LED: GREEN when output >370VDC                                                                  |
|                   | Turns OFF when output <350VDC                                                                   |
| PHASE             | LED: GREEN when all three phases of AC input are present,                                       |
|                   | RED if:                                                                                         |
|                   | a) One of the Input AC Phases is low or lost (Applicable for 400/480 with 30% Load or greater). |
|                   | b) An internal fuse is open in one or more power modules.                                       |
|                   |                                                                                                 |
| ENA               | LED: Green when the TPF45000-385 is commanded to turn ON either via I <sup>2</sup> C            |
|                   | command or via the hardware PSON signal.                                                        |
| FAULT             | LED: RED if:                                                                                    |
|                   | a) AC power is applied to the unit and the output is OFF.                                       |
|                   | b) One or more of the Fans is rotating slow or not working at all.                              |
|                   | c) DC Buss in one or more of the power modules is out of limit.                                 |
|                   | d) OTP Condition.                                                                               |
|                   | e) The unit is turned OFF via I <sup>2</sup> C command or via the hardware PSON signal.         |
| OTW               | LED: RED when internal temperature approaches OTP setpoint                                      |
|                   | This LED is normally OFF                                                                        |
| OTP               | LED: RED if any power module has been turned OFF due to over temperature                        |
|                   | condition                                                                                       |
|                   | This LED is normally OFF                                                                        |

#### Table 7

| <b>Remote Control Features</b> |                                                                    |
|--------------------------------|--------------------------------------------------------------------|
| Remote On/Off Control          | On/Off control: Via signal connector.                              |
|                                | PSON High / Low thresholds: 6.0V / 0.6V                            |
|                                | 20V Maximum allowable.                                             |
|                                | -20V Minimum allowable                                             |
|                                | Signal applied between terminals 1 (PSON1) and 2 (PSON2) on Signal |
|                                | Connector.                                                         |
|                                | ISOLATED from Primary                                              |



| <b>PMBus Features</b>           |                                                                                                                                                                  |
|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Output Voltage Monitoring       | Output voltage monitoring via the PMBus.<br>For reference only, no accuracy specified                                                                            |
| Input Voltage Monitoring        | Input voltage monitoring via the PMBus.<br>Accuracy of the input reading is +/- 6% of full scale<br>Measurement range is 200-310VAC (equivalent Line to Neutral) |
| Output Current Monitoring       | Output current monitoring via the PMBus.<br>Accuracy of the current reading is +/-12% of full scale above 50% load<br>Measurement range is 0-110%                |
| Internal Temperature Monitoring | Internal temperature monitoring via the PMBus.<br>For reference only, no accuracy specified.<br>Measurement range is 0-150°C                                     |
| Remote On/Off Control           | Supply ON/OFF control via the PMBus                                                                                                                              |
| Status Information              | Status Information via the PMBus.<br>See Table 13 for details on available status information                                                                    |
| Product Information             | Product information via the PMBus.<br>Factory Programmed.<br>Manufacturer ID, Model, Revision, Manufacturer location, Manufacturing Date<br>and Serial Number    |
|                                 | Table 9                                                                                                                                                          |

Input, Output and Signal Connections Input 4 Pin connector. Recommended mating connector: Phoenix Contact 1762615 DC Output Four parallel 4 pin connectors. It is recommended to split the output load equally across the four connectors. Do not exceed 50A on any individual connector. Recommended mating connector: MOLEX P/N: 42816-0412 Recommended receptacle contacts: MOLEX P/N: 42815-0114 Small Signal Connector 10 Pin connector. See Table 11 for pin configuration. Recommended mating connector: MOLEX P/N: 43025-1000 Recommended receptacle contacts: MOLEX P/N: 43030-0002 I<sup>2</sup>C Bus Port 4 Pin connector: See Table 12 for pin configuration Recommended mating connector: MOLEX P/N: 43025-0400 Recommended receptacle contacts: MOLEX P/N: 43030-0002 **USB** Port USB-Type B connector Used for I<sup>2</sup>C communications Requires Microchip MCP2221 Driver and MCP2221 I<sup>2</sup>C /SMBus Terminal These files are available at: https://www.microchip.com/en-us/product/MCP2221#document-table

| Small Signal Connector |                      |                                                                                                                                                                                                                                                                                       |  |
|------------------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Name                   | Terminal<br>Location | Description                                                                                                                                                                                                                                                                           |  |
| ON/OFF (PSON1)         | 1                    | Remote On/Off control. See Remote Control Features section for additional details.                                                                                                                                                                                                    |  |
| ON/OFF (PSON2)         | 2                    | Remote On/Off control. See Remote Control Features section for additional details.                                                                                                                                                                                                    |  |
| AUX (+)                | 3                    | Auxiliary Output Voltage<br>13-15V, 0.2A Isolated<br>Terminal 3 used for Return.                                                                                                                                                                                                      |  |
| AUX (-)                | 4                    | Return for AUX (+)                                                                                                                                                                                                                                                                    |  |
| RTN                    | 5                    | Return for Phase Alarm, Fault alarm, DCOK, OTP and OTW signals                                                                                                                                                                                                                        |  |
| PHASE ALARM            | 6                    | Open collector. Max. sink current: 5mA.Off (open) when OK, ON (closed) when input phase missing(Applicable for 400/480 with 30% Load or greater).Open collector. Non Polarized, 60V peak,Max. sink current: 5mA <sub>DC</sub> . 2Ω ON resistance, IsolatedTerminal 5 used for Return. |  |
| FAULT ALARM            | 7                    | Conducts when Fault occurs<br>Open collector. Non Polarized, 60V peak,<br>Max. sink current: 5mA <sub>DC</sub> . 2Ω ON resistance, Isolated<br>Terminal 5 used for Return.                                                                                                            |  |
| DC OK                  | 8                    | Conducts when Vout is greater than 370VDC<br>Open collector. Non Polarized, 60V peak,<br>Max. sink current: $5mA_{DC}$ . 2 $\Omega$ ON resistance, Isolated<br>Terminal 5 used for Return.                                                                                            |  |
| OTP                    | 9                    | Over Temperature ProtectionConducts when any module shuts down due to over temperature conditionOpen collector. Non Polarized, 60V peak,Max. sink current: 5mA <sub>DC</sub> . 2Ω ON resistance, IsolatedTerminal 5 used for Return.                                                  |  |
| OTW                    | 10                   | Over Temperature Warning   Conducts when any module gets close to its OTP threshold.   Open collector. Non Polarized, 60V peak,   Max. sink current: 5mA <sub>DC</sub> . 2Ω ON resistance, Isolated   Terminal 5 used for Return.                                                     |  |

Table 11

| I <sup>2</sup> C Bus Port |          |                                     |  |  |
|---------------------------|----------|-------------------------------------|--|--|
| Name                      | Terminal | Description                         |  |  |
|                           | Location |                                     |  |  |
| SMB GND                   | 1        | Return for I <sup>2</sup> C         |  |  |
| SMB ALERT                 | 2        | Interrupt Line for I <sup>2</sup> C |  |  |
| SDA                       | 3        | Data Line for I <sup>2</sup> C      |  |  |
| SCL                       | 4        | Clock Line for I <sup>2</sup> C     |  |  |



# TPF45000-385 POWER SUPPLY OPERATION MANUAL

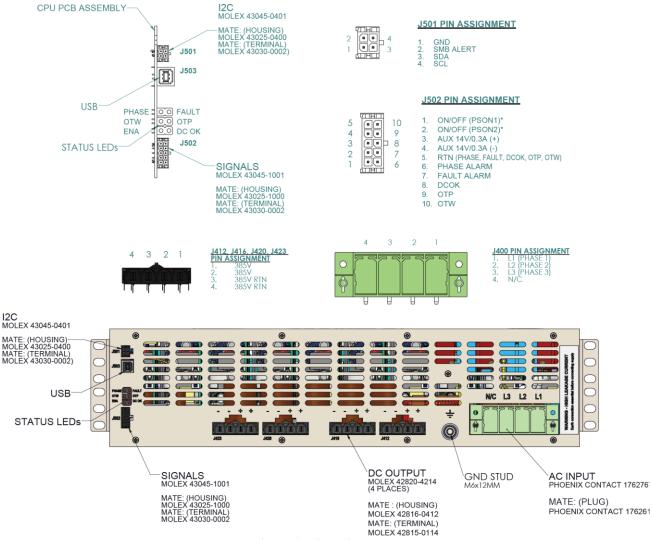



Figure 1: Pin assignments



## **Ripple and Noise Notes**

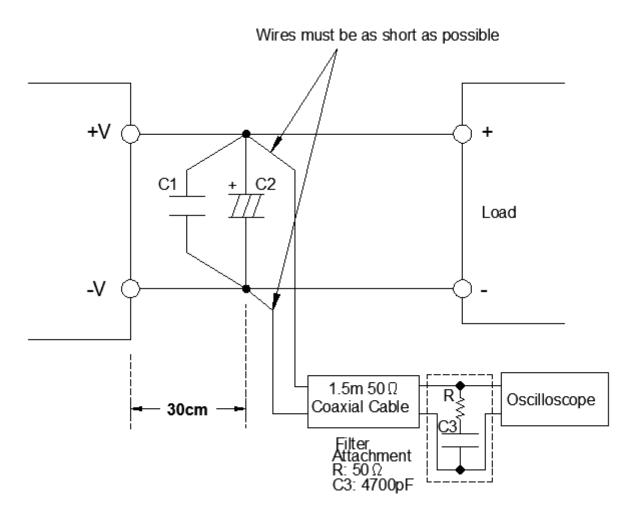
# TPF45000-385 POWER SUPPLY OPERATION MANUAL

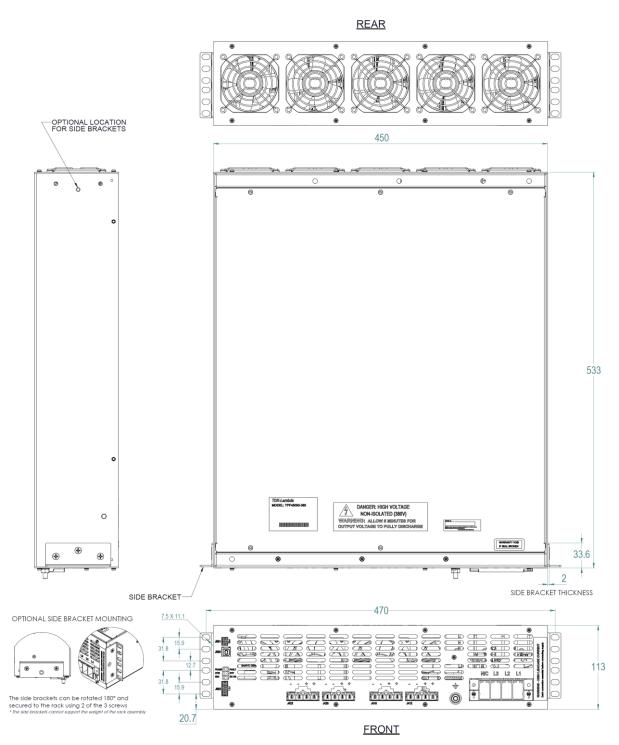
Ripple and Noise is measured according to the description below in accordance with JEITA RC-9131C (Sections 7.16, 7.17 and 7.18).

The measurement connection is shown in Fig. 3-1.

C1 (0.1 $\mu$ F Ceramic Capacitor), C2 (47 $\mu$ F Aluminum Electrolytic Capacitor) must be connected in parallel at 30cm from the output terminals, along the load cable. Attach a maximum 1.5m 50 $\Omega$  coaxial cable from the ceramic capacitor electrodes to a filter attachment installed on the oscilloscope. The filter attachment consists of C3 (4700 $\mu$ F film capacitor) in series with R (50 $\Omega$  resistor). Use 100MHz bandwidth oscilloscope or equivalent.

In general, output ripple voltage and output spike noise voltage can be reduced by increasing external capacitance.





Figure 2: Output Ripple Voltage (including Spike Noise) Measurement Method



# TPF45000-385 POWER SUPPLY OPERATION MANUAL

# **Mechanical Drawing**

Overall dimensions for the TPF45000-385 is shown below:



The unit weight is approximately 30 kg and should be installed onto a shelf or support bracket/rails. Secure in place using M6 or12/24 hardware into the two side brackets provided.

Allow a minimum of 50mm unrestricted air space at the rear of the unit. Do not obstruct air flow to the unit front side.

# TPF45000-385 POWER SUPPLY OPERATION MANUAL

## **PMBus Interface**

## The TPF45000-385 has Power Management Bus (PMBus) hardware.

#### The PMBUS interface includes:

- Monitoring the Input Voltage (+/- 6% of Full Scale).
- Monitoring the Output Current (+/-12% of Full scale above 50% load).
- Monitoring the Output Voltage.
- Monitoring the Internal Temperature (For reference only, no accuracy specified).
- Programming the Output ON/OFF.
- Reading and Clearing Faults.
- Reading the Manufacturing Related Data (Model Name, Serial No, Manufacturing Date, etc.).

### **ATTENTION:**

## The PMBus supports:

- 100 KHz Operation.
- Block Read Protocol.
- Group Command Protocol.
- Direct Command Format for Monitoring and Programming
- Functions. Ver. 1.1 of PMBus Specifications.



# TPF45000-385 POWER SUPPLY OPERATION MANUAL

#### ADDRESSING (A1, A0 inputs)

To communicate with the TPF45000-385, the master must first address the slave devices via a slave address byte. The slave address byte consists of seven address bits and a direction bit that indicates the intent to execute a read or write operation.

The 7 bit address has a constant part and variable part:

Constant part of address consists of 5 Most Significant Bits A6, A5, A4, A3 and A2 and always equals 01000.

Variable part of address consists of 2 Least Significant bits: A1 and A0 that allow up to 4 TPF45000-385 to be connected on a single bus. These two bits are assigned using the hardware connections of the TPF45000-385 address connector inside the unit.

The variable address lines (A1 and A0) are internally pulled up by resistors to +5V and can be left open for (1) address or connected for (0) address.

The Address Space contains these 4 possible addresses:

|    |    |    |    |    |    |    | R/W  |             |
|----|----|----|----|----|----|----|------|-------------|
| A6 | A5 | A4 | A3 | A2 | A1 | A0 | Byte | Hex Address |
| 0  | 1  | 0  | 0  | 0  | 0  | 0  | х    | 40h         |
| 0  | 1  | 0  | 0  | 0  | 0  | 1  | х    | 42h         |
| 0  | 1  | 0  | 0  | 0  | 1  | 0  | х    | 44h         |
| 0  | 1  | 0  | 0  | 0  | 1  | 1  | Х    | 46h         |

In case more than one unit is connected to PMBus, each unit must be set to its own unique address. Duplicate addressing is not allowed.

Note: The TPF45000-385 is always considered a slave device.

#### SERIAL CLOCK (SCL)

This line is clocked by the Master which controls the PMBUS. It is connected to +5.0V (referenced to "SIG\_GND") via a  $5.0k\Omega$  pull-up resistor inside the TPF45000-385.

#### SERIAL DATA (SDA)

This is a Bi-Directional line which is connected to +5.0V (referenced to "SIG\_GND") via a  $5.0k\Omega$  pull up resistor inside the TPF45000-385.

#### ALERT

ALERT is used to indicate to the HOST about any Faults/Error/Warning Conditions.

This line is connected to +5.0V (referenced to "SIG\_GND") via a  $3.0k\Omega$  pull up resistor.

This Signal is HIGH to indicate that no fault/error/warning is present. If some fault/error/warning occurs, the signal will go LOW.

The Master must poll multiple units after receiving ALERT to retrieve fault/error/warning information.

Note: The TPF45000-385 does not respond to Alert Response Address.

# TPF45000-385 POWER SUPPLY OPERATION MANUAL

## PMBus COMMAND SET

#### • **OPERATION MODE**

This command is used to set the way you control the output of the TPF45000-385. Setting the Operation Mode to "*Remote Mode*" allow you to control the output using the "OPERATION ON/OFF" command via the I<sup>2</sup>C only. In the "*Local Mode*" you can control the output using the "PSON" pins on the Signals connector only. The default is the "*Local Mode*".

| Command code | Туре     | Data sent  |
|--------------|----------|------------|
| D8h          | R/W Byte | 00h=Remote |
| D8h          | R/W Byte | 80h=Local  |

#### • **OPERATION (ON/OFF)**

If the TPF45000-385 is turned OFF with the "OPERATION OFF" command, it can be turned ON with the "OPERATION ON" command.

| Command code | Туре     | Data sent |
|--------------|----------|-----------|
| 01h          | R/W Byte | 00h=OFF   |
| 01h          | R/W Byte | 80h=ON    |

Note: This command will not work in the "Local Mode".

### • CLEAR FAULTS

This command is used to clear the "STATUS REGISTERS" after any fault occurs.

If the CLEAR\_FAULTS command is not sent after any fault occurs, the "STATUS REGISTERS" will not be cleared. ALERT signal will remain "LOW" until a "CLEAR FAULTS" command is sent.

If a Fault or Warning is still present after "CLEAR\_FAULTS" is sent, "STATUS REGISTERS" will be updated and the ALERT signal will be "LOW" again.

| Command code | Туре      | #Data bytes |  |
|--------------|-----------|-------------|--|
| 03h          | Send Byte | 0           |  |



## • **READ\_STATUS**

This Command is used to read the status of the TPF45000-385. The Status information is stored in a special register called the "STATUS REGISTER"

The Status reports 6 different types of Faults and Warnings.

| Command Used | Туре      | #Data bytes |
|--------------|-----------|-------------|
| D0h          | Read Word | 1           |

Fault is indicated by "1". No fault is indicated by "0".

| Faults  | Туре          | Bit # in<br>Status<br>Register | Meaning                                                       | Output<br>behavior  |
|---------|---------------|--------------------------------|---------------------------------------------------------------|---------------------|
|         |               |                                |                                                               |                     |
| ON/OFF  | FAULT         | 0                              | Global Output Enabled/Output<br>Disabled                      | Output ON or<br>OFF |
| OTW     | WARNING       | 1                              | Internal temperature ~ 10°C below OTP limit.                  | Output ON           |
| OTP     | FAULT         | 2                              | Internal temperature higher than safe limit                   | Output OFF          |
| DCOK    | WARNING       | 3                              | Output Voltage < 85~95% of Set Vout<br>on one or more modules | Output ON or<br>OFF |
| PHASEOK | WARNING       | 4                              | One Input Phase Low or Out                                    | Output ON           |
| FANOK   | FAULT/WARNING | 5                              | Fan is rotating slow or Stopped                               | Output ON           |
| ENA     | WARNING       | 6                              | Module Output Enabled/Output<br>Disabled                      |                     |
| ERROR   | WARNING       | 7                              | I <sup>2</sup> C Error                                        | Output ON           |



## • READ\_OTP\_STATUS

This Command is used to determine which of the 10 modules inside the TPF45000-385 set the Over Temp Protection (OTP) Bit in the "STATUS REGISTER".

| Command Used | Туре      | #Data bytes |
|--------------|-----------|-------------|
| DBh          | Read Word | 2           |

Module in Fault is indicated by "1".

| Module | Bit # in<br>1 <sup>st</sup> Byte | Meaning                                               |
|--------|----------------------------------|-------------------------------------------------------|
|        |                                  |                                                       |
| 1      | 0                                | Internal temperature of Module #1 in<br>OTP condition |
| 2      | 1                                | Internal temperature of Module #2 in<br>OTP condition |
| 3      | 2                                | Internal temperature of Module #3 in<br>OTP condition |
| 4      | 3                                | Internal temperature of Module #4 in<br>OTP condition |
| 5      | 4                                | Internal temperature of Module #5 in<br>OTP condition |
| 6      | 5                                | Internal temperature of Module #6 in<br>OTP condition |
| 7      | 6                                | Internal temperature of Module #7 in<br>OTP condition |
| 8      | 7                                | Internal temperature of Module #8 in<br>OTP condition |

| Module | Bit # in<br>2 <sup>st</sup> Byte | Meaning                                                |
|--------|----------------------------------|--------------------------------------------------------|
|        |                                  |                                                        |
| 9      | 0                                | Internal temperature of Module #9 in<br>OTP condition  |
| 10     | 1                                | Internal temperature of Module #10 in<br>OTP condition |





## • **READ\_DC\_STATUS**

This Command is used to determine which of the 10 modules inside the TPF45000-385 set the Output Fault (DCOK) Bit in the "STATUS REGISTER".

| Command Used | Туре      | #Data bytes |
|--------------|-----------|-------------|
| DCh          | Read Word | 2           |

Module in Fault is indicated by "1".

| Module | Bit # in<br>1 <sup>st</sup> Byte | Meaning                                             |
|--------|----------------------------------|-----------------------------------------------------|
|        |                                  |                                                     |
| 1      | 0                                | Output Voltage < 85~95% of Set Vout<br>on Module #1 |
| 2      | 1                                | Output Voltage < 85~95% of Set Vout<br>on Module #2 |
| 3      | 2                                | Output Voltage < 85~95% of Set Vout<br>on Module #3 |
| 4      | 3                                | Output Voltage < 85~95% of Set Vout<br>on Module #4 |
| 5      | 4                                | Output Voltage < 85~95% of Set Vout<br>on Module #5 |
| 6      | 5                                | Output Voltage < 85~95% of Set Vout<br>on Module #6 |
| 7      | 6                                | Output Voltage < 85~95% of Set Vout<br>on Module #7 |
| 8      | 7                                | Output Voltage < 85~95% of Set Vout<br>on Module #8 |

| Module | Bit # in<br>2 <sup>st</sup> Byte | Meaning                                              |
|--------|----------------------------------|------------------------------------------------------|
|        |                                  |                                                      |
| 9      | 0                                | Output Voltage < 85~95% of Set Vout<br>on Module #9  |
| 10     | 1                                | Output Voltage < 85~95% of Set Vout<br>on Module #10 |



### • **READ\_PHASE\_STATUS**

This Command is used to determine which of the 10 modules inside the TPF45000-385 set the Input Phase Fault (PHASEOK) Bit in the "STATUS REGISTER".

| Command Used | Туре      | #Data bytes |
|--------------|-----------|-------------|
| DDh          | Read Word | 2           |

Module in Fault is indicated by "1".

| Module | Bit # in<br>1 <sup>st</sup> Byte | Meaning                                    |
|--------|----------------------------------|--------------------------------------------|
|        |                                  |                                            |
| 1      | 0                                | One Input Phase Low or Out<br>on Module #1 |
| 2      | 1                                | One Input Phase Low or Out<br>on Module #2 |
| 3      | 2                                | One Input Phase Low or Out<br>on Module #3 |
| 4      | 3                                | One Input Phase Low or Out<br>on Module #4 |
| 5      | 4                                | One Input Phase Low or Out<br>on Module #5 |
| 6      | 5                                | One Input Phase Low or Out<br>on Module #6 |
| 7      | 6                                | One Input Phase Low or Out<br>on Module #7 |
| 8      | 7                                | One Input Phase Low or Out<br>on Module #8 |

| Module | Bit # in<br>2 <sup>st</sup> Byte | Meaning                                     |
|--------|----------------------------------|---------------------------------------------|
|        |                                  |                                             |
| 9      | 0                                | One Input Phase Low or Out<br>on Module #9  |
| 10     | 1                                | One Input Phase Low or Out<br>on Module #10 |



## • READ\_FAN\_STATUS

This Command is used to determine the Fan(s) that set the Fan warning (FANOK) Bit in the "STATUS REGISTER" of the TPF45000-385.

| Command Used | Туре      | #Data bytes |
|--------------|-----------|-------------|
| DFh          | Read Byte | 1           |

Fan in Fault is indicated by "1".

| Module | Bit # | Meaning                            |  |  |
|--------|-------|------------------------------------|--|--|
|        |       |                                    |  |  |
| 1      | 0     | Fan #1 is rotating slow or Stopped |  |  |
| 2      | 1     | Fan #2 is rotating slow or Stopped |  |  |
| 3      | 2     | Fan #3 is rotating slow or Stopped |  |  |
| 4      | 3     | Fan #4 is rotating slow or Stopped |  |  |
| 5      | 4     | Fan #5 is rotating slow or Stopped |  |  |



Fan #1 ...... Fan #5



### • **READ\_ENA\_STATUS**

This Command is used to determine which of the 10 modules inside the TPF45000-385 set the Output Enabled/Output Disabled (ENA) Bit in the "STATUS REGISTER".

| Command Used | Туре      | #Data bytes |
|--------------|-----------|-------------|
| DEh          | Read Word | 2           |

Module in Disable Mode is indicated by "1".

| Module | Bit # in<br>1 <sup>st</sup> Byte | Meaning                    |  |  |
|--------|----------------------------------|----------------------------|--|--|
|        |                                  |                            |  |  |
| 1      | 0                                | Vout of Module #1 Disabled |  |  |
| 2      | 1                                | Vout of Module #2 Disabled |  |  |
| 3      | 2                                | Vout of Module #3 Disabled |  |  |
| 4      | 3                                | Vout of Module #4 Disabled |  |  |
| 5      | 4                                | Vout of Module #5 Disabled |  |  |
| 6      | 5                                | Vout of Module #6 Disabled |  |  |
| 7      | 6                                | Vout of Module #7 Disabled |  |  |
| 8      | 7                                | Vout of Module #8 Disabled |  |  |

| Module | Bit # in<br>2 <sup>st</sup> Byte | Meaning                     |  |
|--------|----------------------------------|-----------------------------|--|
|        |                                  |                             |  |
| 9      | 0                                | Vout of Module #9 Disabled  |  |
| 10     | 1                                | Vout of Module #10 Disabled |  |



### • **READ\_OPERATING\_HOURS**

This Command is used to retrieve the Hours that the TPF45000-385 is been operational since first powered up.

| <b>Command Used</b> | Туре      | #Data bytes |
|---------------------|-----------|-------------|
| E0h                 | Read Word | 2           |

The two bytes represent hours.

The total operating hours can be calculated by converting the data to decimal values, then multiply the High Byte by 255 and add the low byte.

Example: Assume the data received is 0x03,  $0x45 \rightarrow 03$ ,  $69 \rightarrow 3*255+69=834$ Hrs

#### COMMANDS TO READ MANUFACTURING INVENTORY DETAILS

| Command Name   | <b>Command code</b> | Туре       | #Data bytes |
|----------------|---------------------|------------|-------------|
| PMBUS_REVISION | 98h                 | Read Byte  | 1           |
| MFR_ID         | 99h                 | Read Block | 10          |
| MFR_MODEL      | 9Ah                 | Read Block | 12          |
| MFR_REVISION   | 9Bh                 | Read Block | 11          |
| MFR_LOCATION   | 9Ch                 | Read Block | 3           |
| MFR_DATE       | 9Dh                 | Read Block | 8           |
| MFR_SERIAL     | 9Eh                 | Read Block | 20          |

All details except for (PMBUS\_REVISION) are stored in ASCII format.

MFR DATE:

Ex: 0x30,0x33,0x2D,0x30,0x31,0x2D,0x31,0x37 M M - D D - Y Y



#### MONITORING FUNCTIONS

For Monitoring functions use the following equation

$$X = (Y*10^{-R} - b) / m$$

Where **Y** - digital value received from the supply. **X** is the normal value (V, A, °C) **m**, **b**, **R** - coefficients that are explained in Table 1.

| <b>Physical value</b>        | Physical<br>Unit | Min.<br>Value | Max.<br>Value | m     | b      | R  |
|------------------------------|------------------|---------------|---------------|-------|--------|----|
| Input Voltage<br>monitoring  | V                | 225           | 300           | 353   | -28233 | -2 |
| Output Voltage<br>monitoring | V                | 0             | 385           | 25575 | 0      | -4 |
| Output Current<br>monitoring | %                | 0             | 110           | 100   | 0      | 0  |
| Temperature<br>monitoring    | °C               | 0             | 150           | 23    | 4750   | -1 |

Table 1

#### m, b, R coefficients can also be recovered from the EEPROM and are stored in ASCII Format.

Ex:

| Command name        | Command code | Туре       | #Data bytes |
|---------------------|--------------|------------|-------------|
| MFR_Vin_MON_COEFF   | DAh          | Read Block | 16          |
| MFR_Vout_MON_COEFF  | D3h          | Read Block | 16          |
| MFR_Iout_MON _COEFF | D5h          | Read Block | 16          |
| MFR_TEMP_MON_COEFF  | D7h          | Read Block | 16          |

## • READ\_VIn

This Command is used to retrieve the measured Input voltage of the TPF45000-385.

| Command Used | Туре      | #Data bytes |
|--------------|-----------|-------------|
| 88h          | Read Word | 2           |

#### Example:

Hex read back = 0x01, 0xE2. Converted to Decimal = 482. Vin= (( $482*10^{2})+28233$ )/353=216.52Vac

#### • **READ\_VOut**

This Command is used to retrieve the measured Output voltage of the TPF45000-385.

| Command Used | Туре      | #Data bytes |
|--------------|-----------|-------------|
| 8Bh          | Read Word | 2           |

#### • **READ\_Iout**

This Command is used to retrieve the measured Output Load Current of the TPF45000-385.

| Command Used | Туре      | #Data bytes |
|--------------|-----------|-------------|
| 8Ch          | Read Byte | 1           |

#### **Example:**

Hex read back =  $0 \times 0^{\circ}$ . Converted to Decimal = 12. Iout=  $((12*10^{\circ})*0)/100=12\%$ .

### • **READ\_Temperature**

This Command is used to retrieve the measured maximum internal temperature of the TPF45000-385.

| Command Used | Туре      | #Data bytes |
|--------------|-----------|-------------|
| 8Dh          | Read Word | 2           |

#### **Example:**

Hex read back = 0x02, 0x1F. Converted to Decimal = 543. Vin=  $(543*10^{1})-4750)/23=29.56^{\circ}C$