# PXD40 Series Instruction and Application Manual



## **Content:**

| 1.  | Product Description                     | 2   |
|-----|-----------------------------------------|-----|
| 2.  | Product Features                        |     |
| 3.  | Intended Use                            | 2   |
| 4.  | Installation Instructions               | 3   |
| 5.  | Functional Description                  | 4   |
| 6.  | Functional Diagram                      |     |
| 7.  | Typical Wiring Scheme                   | 5   |
| 8.  | Product Nomenclature and List of Models |     |
| 9.  | Short-form Data                         | 7   |
| 10. | Physical Dimensions and Pin Layout:     | 8   |
| 11. | Isolation and Dielectric Strength       | 8   |
| 12. | Protection Features                     | 9   |
| 13. | Approvals and Regulatory Compliances    | 9   |
|     | Thermal Consideration and Derating      |     |
| 15. | EMC Considerations                      | .11 |
| 16. | Remote ON/OFF Function                  | .12 |
| 17. | Output Voltage Adjustment               | .13 |
| 18. | Accessory – Heatsink Kits               | .14 |
|     | Cleaning Process and Soldering Profile  |     |
|     |                                         |     |

# 1. PRODUCT DESCRIPTION

The PXD40 series are board mount 40W DC-DC converters in a rugged 2  $\times$  1 inch housing with silicone potting. They provide a regulated and galvanically isolated output, available as either single voltage or  $\pm$  dual output voltages.

The most outstanding features of this series are the wide input voltage ranges from 9V to 36V (4:1) for the 24V and 18V to 75V (4:1) for the 48V input voltage models as well as the six-sided shielding, that makes the device immune to external EMC interference.

The wide allowed case temperature range from  $-40^{\circ}$ C to  $+105^{\circ}$ C, the low heat generation, due to the high efficiencies up to 93% and the high shock and vibration resistance thanks to the potted design make this device suitable for nearly every situation. Additionally available fitted heat sinks simplify the design-in process in the end device.

Applications for this DC-DC converter can be found in Distributed Power Architecture (DPA), telecommunications, battery-powered devices, measurement and laboratory equipment, devices in industrial environments, and many other areas.

## 2. PRODUCT FEATURES

- 2 x 1 Inch (50.8 x 25.4mm) Industry Standard Footprint
- 1600Vdc Input to Output Isolation
- 9-36V or 18-75V (4:1) Wide-range Input
- Single or ± Dual Output Voltages Available
- IEC 62368-1 (ICT) Approved
- High Shock and Vibration Resistance due to Potted Design
- Six-sided Shielding
- Efficiency up to 93% and Low No-load Power Consumption
- -40 to +105°C Operating Case Temperature Range
- Fitted or Accessory Heat Sink Options Available
- Remote ON/OFF Input, Only 3mA Current Draw in OFF-Mode

## 3. INTENDED USE

This device is designed and manufactured as a component part to be mounted on a pc-board and to be installed in electronic devices.

This device is intended for commercial use, such as in industrial control, process control, monitoring and measurement equipment or the like.

Do not use this device in equipment, where malfunctioning may cause severe personal injury or threaten human life without additional appropriate safety devices, that are suited for the end-application.

If this device is used in a manner outside of its specification, the protection provided by the device may be impaired.

# 4. INSTALLATION INSTRUCTIONS

Before operating this device, please read this manual thoroughly and retain for future reference! This device may only be installed and put into operation by qualified personnel. If damage or malfunction should occur during operation, immediately turn power off and send device to the factory for inspection. The device does not contain serviceable parts.

WARNING Risk of electrical shock, fire, personal injury or death.

Turn power off before working on the device. Protect against inadvertent re-powering.

Do not modify or repair the unit.

Do not open the unit as high voltages are present inside.

Use caution to prevent any foreign objects from entering the housing.

Do not use in locations where flammable gas or ignitable substances are present.

Do not use in wet locations or in areas where moisture or condensation can be expected.

Do not use in environment with strong electromagnetic field, corrosive gas or conductive substances or direct sunlight.

Do not touch during power-on, and immediately after power-off. Hot surfaces may cause burns.

## Obey the following installation instructions:

This device may only be installed and put into operation by qualified personnel.

This device does not contain serviceable parts. Replace fuses only when explicitly permitted. If damage or malfunction should occur during installation or operation, immediately turn power off and send unit to the factory for inspection.

Install the device in an enclosure providing protection against electrical, mechanical and fire hazards.

The device is designed for pollution degree 2 areas in controlled environments. No condensation or frost is allowed.

The input can be powered from batteries or similar DC sources.

Check for correct input polarity. The device will get damaged when the voltage is reversed.

Ensure sufficient cooling to avoid overloading the device.

The device is designed for altitudes up to 5000m (16400ft).

This device is not internally fused. An external input fuse must always be used. Use an 8A fast-acting fuse for models with 24V input and a 4A slow-blow fuse for models with 48V input.

The maximum operational case temperature is +105°C (+221°F). The case temperature is defined in the middle of the top side of the cover.

The device is designed to operate in areas between 5% and 95% relative humidity.

# 5. FUNCTIONAL DESCRIPTION

The output is electronically protected against no-load, overload and short circuit. In case of an overload or short circuit, the device will operate intermittently (hiccup mode).

The device can supply resistive and inductive loads.

Avoid loads with large input capacitances. If the capacitive load is higher than the values specified, the device operates in an intermittent mode (hiccup mode).

```
PXD40-24WS3P3, PXD40-48WS3P3: max. 22000μF
                PXD40-48WS05:
PXD40-24WS05,
                                max. 12000μF
                                max. 2000μF
PXD40-24WS12,
                PXD40-48WS12:
PXD40-24WS15,
                PXD40-48WS15:
                                max. 1300μF
                PXD40-48WS24:
                                max. 490μF
PXD40-24WS24,
PXD40-24WS48,
                PXD40-48WS48:
                                max. 120µF
PXD40-24WD12
                PXD40-48WD12:
                                max. ±980µF
PXD40-24WD15
                PXD40-48WD15:
                                max. ±630µF
PXD40-24WD24
                PXD40-48WD24:
                                max. ±250µF
```

The  $\pm$  output voltage is generated by one converter. The sum of the two voltages is regulated. The power can be drawn asymmetrically but it is recommended that the less loaded output should take a minimum of 5% of the total load.

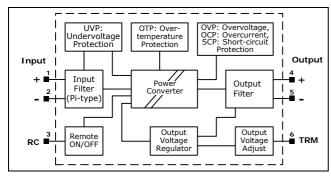
For single output voltage models, the output voltage can be adjusted with an external resistor connected between the TRIM-pin and the output voltage.

The device is equipped with an over-temperature protection. In case of a high temperature, the output shuts down and starts automatically after cooling off.

The device is equipped with under-voltage protection on the input side. If the input voltage is too low, the device does not start or switches off.

In case of an internal defect, a redundant circuit prevents the output voltage from becoming excessive or dangerous (zener diode protection).

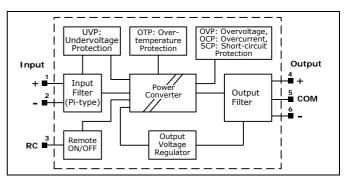
The device is equipped with a remote ON/OFF function. Link the RC-pin and –Vin to turn the output off (standard configuration).


Do not apply return voltages from the load to the output terminals.

Do not connect the outputs of multiple devices in parallel for higher output currents.

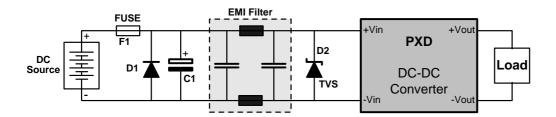
Do not connect the outputs of multiple devices in a series connection for higher output voltages.

Do not connect batteries for charging purposes to the output of the device.


## 6. FUNCTIONAL DIAGRAM



Functional diagram for models with a single output voltage


RC: Remote ON/OFF control pin

TRM: Trim pin for output voltage adjustment



Functional diagram for models with dual output voltages

# 7. TYPICAL WIRING SCHEME



**Fuse F1:** The DC-DC converter is not internally fused. An external input fuse must always be used. Use an 8A fast-acting fuse for models with 24V input and a 4A slow-blow fuse for models with 48V input.

**Diode D1:** The diode provides a reverse input polarity protection. In case of a reversed polarity, the fuse will open and protect the converter.

In applications where the input voltage can be reversed, it is advisable to install such a protection. Schottky diodes are most suitable for this purpose. The current should be at least 1.5 times the tripping current of the fuse. The voltage rating of the diode should be at least equal to the maximum possible input voltage.

Capacitor C1 and Diode D2: These two components provide higher transient resistance at the input. The capacitor should be  $220\mu F$  and the suppressor diode should be either a 58V type (for devices with 24V input) or a 120V type (for devices with 48V input).

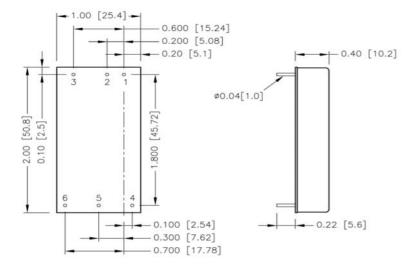
**EMI Filter**: This filter reduces the conducted emission to the input. Circuit examples for a class A or a more stringent class B filter can be found in the chapter "EMC Considerations".

# 8. PRODUCT NOMENCLATURE AND LIST OF MODELS

#### **Product Nomenclature:**



#### Model list:


| PXD40-24WS3P3 | DC-DC converter isolated, 40W, Input: 9-36V, Output: 3.3V 12.2A, 2x1 inch, pcb-mount   |
|---------------|----------------------------------------------------------------------------------------|
| PXD40-24WS05  | DC-DC converter isolated, 40W, Input: 9-36V, Output: 5V 8A, 2x1 inch, pcb-mount        |
| PXD40-24WS12  | DC-DC converter isolated, 40W, Input: 9-36V, Output: 12V 3.3A, 2x1 inch, pcb-mount     |
| PXD40-24WS15  | DC-DC converter isolated, 40W, Input: 9-36V, Output: 15V 2.67A, 2x1 inch, pcb-mount    |
| PXD40-24WS24  | DC-DC converter isolated, 40W, Input: 9-36V, Output: 24V 1.67A, 2x1 inch, pcb-mount    |
| PXD40-24WS48  | DC-DC converter isolated, 40W, Input: 9-36V, Output: 48V 0.83A, 2x1 inch, pcb-mount    |
| PXD40-24WD12  | DC-DC converter isolated, 40W, Input: 9-36V, Output: ±12V ±1.67A, 2x1 inch, pcb-mount  |
| PXD40-24WD15  | DC-DC converter isolated, 40W, Input: 9-36V, Output: ±15V ±1.33A, 2x1 inch, pcb-mount  |
| PXD40-24WD24  | DC-DC converter isolated, 40W, Input: 9-36V, Output: ±24V ±0.83A, 2x1 inch, pcb-mount  |
| PXD40-48WS3P3 | DC-DC converter isolated, 40W, Input: 18-75V, Output: 3.3V 12.2A, 2x1 inch, pcb-mount  |
| PXD40-48WS05  | DC-DC converter isolated, 40W, Input: 18-75V, Output: 5V 8A, 8x1 inch, pcb-mount       |
| PXD40-48WS12  | DC-DC converter isolated, 40W, Input: 18-75V, Output: 12V 3.33A, 2x1 inch, pcb-mount   |
| PXD40-48WS15  | DC-DC converter isolated, 40W, Input: 18-75V, Output: 15V 2.67A, 2x1 inch, pcb-mount   |
| PXD40-48WS24  | DC-DC converter isolated, 40W, Input: 18-75V, Output: 24V 1.67A, 2x1 inch, pcb-mount   |
| PXD40-48WS48  | DC-DC converter isolated, 40W, Input: 18-75V, Output: 48V 0.83A, 2x1 inch, pcb-mount   |
| PXD40-48WD12  | DC-DC converter isolated, 40W, Input: 18-75V, Output: ±12V ±1.67A, 2x1 inch, pcb-mount |
| PXD40-48WD15  | DC-DC converter isolated, 40W, Input: 18-75V, Output: ±15V ±1.33A, 2x1 inch, pcb-mount |
| PXD40-48WD24  | DC-DC converter isolated, 40W, Input: 18-75V, Output: ±24V ±0.83A, 2x1 inch, pcb-mount |

# 9. SHORT-FORM DATA

| Input voltage range              | Min.<br>Nom. | 9Vdc<br>24Vdc                       | For 24V input voltage models                                                                                                                                          |
|----------------------------------|--------------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                  | Max.         | 36Vdc                               |                                                                                                                                                                       |
|                                  | Min.         | 18Vdc                               | For 48V input voltage models                                                                                                                                          |
|                                  | Nom.         | 48Vdc                               |                                                                                                                                                                       |
|                                  | Max.         | 75Vdc                               |                                                                                                                                                                       |
| Input current at no load         | Max.         | 15mA                                | For 24V input voltage models                                                                                                                                          |
| Innut suggest at semants OFF     | Max.         | 10mA                                | For 48V input voltage models                                                                                                                                          |
| Input current at remote OFF      | Typ.         | 3mA<br>40W                          | For all models                                                                                                                                                        |
| Output power                     | Max.         | See model list                      | For all models                                                                                                                                                        |
| Output current                   | Nom.         | See Model list                      | The value is the nominal current which must not be exceeded even at lower output voltages. At higher voltages, the current is reduced according to the nominal power. |
| Output voltage adjustment range  |              | Not adjustable                      | For dual output models                                                                                                                                                |
|                                  |              | -10%/+20%                           | For 15V and 24V output models                                                                                                                                         |
|                                  |              | ±10%                                | All remaining models                                                                                                                                                  |
| Output voltage accuracy          |              | ±1%                                 | Factory setting                                                                                                                                                       |
| Line regulation                  |              | ±0.2%                               | Between 9-36Vdc or 18-75Vdc                                                                                                                                           |
| Load regulation                  |              | ±0.3%                               | For single output models                                                                                                                                              |
| <del></del>                      |              | ±0.5%                               | For dual output models                                                                                                                                                |
| Transient response recovery time |              | 250µs                               | For 25% load steps                                                                                                                                                    |
| Cross regulation (dual models)   |              | ±5%                                 | Asymmetrical load 25%/100%                                                                                                                                            |
| Temperature coefficient          |              | ±0.02%/°C                           |                                                                                                                                                                       |
| Start-up time                    | Typ.<br>Max. | 30ms<br>60ms                        | For resistive load, after applying an input voltage or remote ON signal                                                                                               |
| Ripple and noise voltage         | Тур.         | 75mVp-p                             | For 3.3V and 5V outputs                                                                                                                                               |
| Ripple and noise voltage         | Typ.         | 100mVp-p                            | For 12V and 15V outputs                                                                                                                                               |
|                                  | Typ.         | 150mVp-p                            | For 24V output                                                                                                                                                        |
|                                  | Typ.         | 300mVp-p                            | For 48V output                                                                                                                                                        |
|                                  |              |                                     | Bandwidth 20MHz, and 1µF capacitor                                                                                                                                    |
| Efficiency                       |              | 89.5% to 93%                        | At full load, depending on the model                                                                                                                                  |
| Operational temperature range    |              | -40°C to +105°C                     | See chapter "Thermal Considerations" for derating requirements                                                                                                        |
| Case temperature                 | Max.         | +105°C                              |                                                                                                                                                                       |
| Storage temperature rang         |              | -55°C to +125°C                     |                                                                                                                                                                       |
| Relative humidity                |              | 5% to 95%                           | No condensation allowed                                                                                                                                               |
| Altitude                         | Max.         | 5000m / 16 400ft                    |                                                                                                                                                                       |
| Atmospheric pressure             |              | 110-54kPa                           |                                                                                                                                                                       |
| Vibration                        |              | 20Hz-1kHz:0.04g <sup>2</sup> /Hz    | According to MIL-STD-810F,                                                                                                                                            |
|                                  |              | 1-2kHz: -6dB/octave                 | random vibration,                                                                                                                                                     |
|                                  |              | 60 minutes per axis                 | units are operational                                                                                                                                                 |
| Shock                            |              | 50 g, 11 ms                         | According to MIL-STD-810F,                                                                                                                                            |
|                                  |              | 18 shocks (3 shocks for each ±axis) | units are operational                                                                                                                                                 |
| Size                             |              | 50.8x 25.4x 10.2mm                  | Length x Width x Height                                                                                                                                               |
| SIZE                             |              | 2 x 1 x 0.4"                        | Lengui X Widui X Heigill                                                                                                                                              |
| Weight                           |              | 34g / 0.075lb                       |                                                                                                                                                                       |
| MTBF                             |              | 1 245 000h                          | According to MIL HDBK 217F at full load                                                                                                                               |
|                                  |              | 15 000.1                            |                                                                                                                                                                       |

# 10. PHYSICAL DIMENSIONS AND PIN LAYOUT:

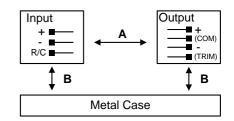
| Length           | 50.8mm, 2.0"                                                                                                                                                             |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Width            | 25.4mm, 1.0"                                                                                                                                                             |
| Height           | 10.2mm, 0.4" without heatsink 19mm, 0.75" with heatsink kit ACC-PX2X1-HC01 24.1mm, 0.95" with heatsink kit ACC-PX2X1-HC02 31.7mm, 1.25" with heatsink kit ACC-PX2X1-HC03 |
| Weight           | 34g / 0.075lb (without heat sink)                                                                                                                                        |
| Case Material    | Copper (six sided)                                                                                                                                                       |
| Potting Material | Silicone                                                                                                                                                                 |



All dimensions in inch [mm]

## Mechanical tolerances:

 $x.xx\pm0.02$  [ $x.x\pm0.5$ ]  $x.xxx\pm0.010$  [ $x.xx\pm0.25$ ] Pin diameter  $\pm0.004$  [0.10]


## Pad size recommendations (all pads)

Through hole:  $\Phi$  0.051 [1.30] Top view pad:  $\Phi$  0.064 [1.63] Bottom view pad:  $\Phi$  0.102 [2.60]

# 11. ISOLATION AND DIELECTRIC STRENGTH

The output voltage is floating and has no ohmic connection to the input or the case.

Hi-pot tests may be repeated by the customer using appropriate test equipment, which applies the voltage with a slow ramp (2s up and 2s down). Connect all input-terminals together as well as all output poles before conducting the test.



| Dielectric strength   | Min. | 1600Vdc | Input to output (A) for 1 minute         |
|-----------------------|------|---------|------------------------------------------|
|                       | Min. | 1600Vdc | Input or output to case (B) for 1 minute |
| Isolation resistance  | Min. | 1 GΩ    | Measured at 500Vdc                       |
| Isolation capacitance | Max. | 1500pF  |                                          |

# 12. PROTECTION FEATURES

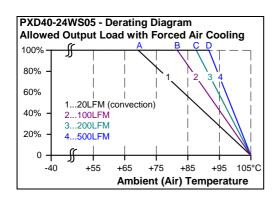
| Under voltage protection (UVP)        | Max. | 9Vdc           | For 24V input voltage models              |
|---------------------------------------|------|----------------|-------------------------------------------|
| Turn-On voltage                       | Max. | 18Vdc          | For 48V input voltage models              |
| Under voltage protection (UVP)        | Min. | 7.0Vdc         | For 24V input voltage models              |
| Shut-down voltage                     | Тур. | 8.0Vdc         |                                           |
|                                       | Max. | 8.8Vdc         |                                           |
|                                       | Min. | 15Vdc          | For 48V input voltage models              |
|                                       | Тур. | 16Vdc          |                                           |
|                                       | Max. | 17.5Vdc        |                                           |
| Input surge voltage                   | Min. | 50Vdc          | For 24V input voltage models, maximal 1s  |
|                                       | Min. | 100Vdc         | For 48V input voltage models, maximal 1s  |
| Output over voltage protection (OVP)  |      |                | Zener diode type                          |
|                                       |      | 3.9Vdc         | For 3.3V output                           |
|                                       |      | 6.2Vdc         | For 5V output                             |
|                                       |      | 15Vdc          | For 12V output                            |
|                                       |      | 20Vdc          | For 15V output                            |
|                                       |      | 30Vdc          | For 24V output                            |
|                                       |      | 60Vdc          | For 48V output                            |
| Output over-current protection (OCP)  | Тур. | 150% of        | Intermittent operation (hiccup mode)      |
|                                       |      | nominal        |                                           |
|                                       |      | output current |                                           |
| Output short-circuit protection (SCP) |      | Included       | Automatic recovery                        |
| Over temperature protection (OTP)     | Тур. | 115°C          | Case temperature                          |
| Reverse input polarity protection     |      | Not included   | Use external protection diode if required |
| Degree of pollution                   |      | 2              | According to IEC 60664-1, not conductive  |
|                                       |      |                |                                           |

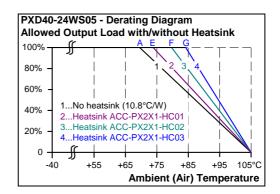
# 13. APPROVALS AND REGULATORY COMPLIANCES

| <u></u>    | 515 L 11 CO C 11 1 L 1 L 1 L 1 L 1 L 1 L 1 L 1 L 1                                                                                   |
|------------|--------------------------------------------------------------------------------------------------------------------------------------|
| CE         | EU Declaration of Conformity includes Low-Voltage and RoHS Directive                                                                 |
| UKCA       | UK Declaration of Conformity includes Electrical Safety and RoHS Directive                                                           |
| EN 62368-1 | Safety requirements for audio/video, information and communication technology equipment                                              |
| UL 62368-1 | Recognized component for audio/video, information and communication technology equipment, E-File E133400, Categories QQJQ2 and QQJQ8 |

# 14. THERMAL CONSIDERATION AND DERATING

The DC-DC converters operate over a wide temperature range. Even if the heat generated by the DC-DC converters are very low, it must be removed. This can be done either by convection cooling, forced air cooling or the use of an additional heatsink (see chapter accessory).


It is important that the enclosure temperature at the indicated location does not exceed the maximum enclosure temperature, which is 105°C.


If no additional heatsink is fitted, the DC-DC converter can be used with the load values given in the derating diagram below. 20LFM corresponds to convection cooling in a vertical mounting position. All other curves (100-500 LFM) require forced airflow through a fan.

Top View
Temperature
measurment
point

Thermal test condition in vertical direction by natural convection (equals 20LFM).

The derating is not hardware controlled. The user has to take this into consideration to stay below the de-rated current limits in order not to overload the unit.





The required power reduction depends on the individual device. The example shows the PXD40-24WS05. The points A to G describe the temperatures at which the power reduction starts. For other models, these points can be taken from the table.

| Derating<br>Starting Point | A<br>20LFM   | B<br>100LFM | <b>C</b><br>200LFM | <b>D</b><br>500LFM | <b>E</b><br>with heatsink | <b>F</b><br>with heatsink | <b>G</b><br>with heatsink |
|----------------------------|--------------|-------------|--------------------|--------------------|---------------------------|---------------------------|---------------------------|
|                            | (convection) |             |                    |                    | ACC-PX2X1-<br>HC01        | ACC-PX2X1-<br>HC02        | ACC-PX2X1-<br>HC03        |
| PXD40-24WS3P3              | 53°C         | 73°C        | 82°C               | 86°C               | 57°C                      | 62°C                      | 65°C                      |
| PXD40-24WS05               | 69°C         | 83°C        | 88°C               | 92°C               | 74°C                      | 81°C                      | 84°C                      |
| PXD40-24WS12               | 68°C         | 82°C        | 88°C               | 91°C               | 73°C                      | 80°C                      | 83°C                      |
| PXD40-24WS15               | 71°C         | 84°C        | 90°C               | 93°C               | 76°C                      | 83°C                      | 87°C                      |
| PXD40-24WS24               | 56°C         | 78°C        | 85°C               | 89°C               | 60°C                      | 65°C                      | 68°C                      |
| PXD40-24WD12               | 63°C         | 79°C        | 86°C               | 89°C               | 67°C                      | 74°C                      | 77°C                      |
| PXD40-24WD15               | 64°C         | 80°C        | 87°C               | 90°C               | 69°C                      | 75°C                      | 78°C                      |
| PXD40-24WD24               | 63°C         | 79°C        | 87°C               | 90°C               | 67°C                      | 74°C                      | 77°C                      |
| PXD40-48WS3P3              | 55°C         | 74°C        | 82°C               | 87°C               | 59°C                      | 64°C                      | 67°C                      |
| PXD40-48WS05               | 63°C         | 79°C        | 86°C               | 89°C               | 67°C                      | 74°C                      | 77°C                      |
| PXD40-48WS12               | 68°C         | 82°C        | 88°C               | 91°C               | 73°C                      | 80°C                      | 83°C                      |
| PXD40-48WS15               | 73°C         | 85°C        | 91°C               | 94°C               | 78°C                      | 85°C                      | 89°C                      |
| PXD40-48WS24               | 66°C         | 81°C        | 87°C               | 90°C               | 71°C                      | 77°C                      | 81°C                      |
| PXD40-48WD12               | 63°C         | 79°C        | 86°C               | 90°C               | 67°C                      | 74°C                      | 77°C                      |
| PXD40-48WD15               | 63°C         | 80°C        | 86°C               | 90°C               | 67°C                      | 74°C                      | 77°C                      |
| PXD40-48WD24               | 67°C         | 82°C        | 87°C               | 91°C               | 72°C                      | 78°C                      | 82°C                      |

# 15. EMC CONSIDERATIONS

In terms of EMC, this DC-DC converter module is considered a component for installation in an end device by a device manufacturer. In order to meet all the requirements of the end device, additional components may have to be deployed and final EMC measurements must be carried out in the end application.

The following tests and measurements were performed according to EN 55032 (emission) and EN 55024 (immunity). All tests and measurements were carried out with standardized test set-ups.

#### **EMC Immunity**

| Electrostatic discharge        | EN 61000-4-2 | Air discharge<br>Contact discharge     | ±8kV<br>±6kV      | Criterion A<br>Criterion A |
|--------------------------------|--------------|----------------------------------------|-------------------|----------------------------|
| Electromagnetic RF field       | EN 61000-4-3 | 80MHz-2.7GHz                           | 10V/m             | Criterion A                |
| Fast transients (Burst)        | EN 61000-4-4 | With additional components see note 1) | ±2kV              | Criterion A                |
| Surge voltage                  | EN 61000-4-5 | With additional components see note 1) | ±2kV              | Criterion A                |
| Conducted disturbance          | EN 61000-4-6 | 0.15-80MHz                             | 10V               | Criterion A                |
| Power frequency magnetic field | EN 61000-4-8 | Continuous<br>For 1 second             | 100A/m<br>1000A/m | Criterion A<br>Criterion A |

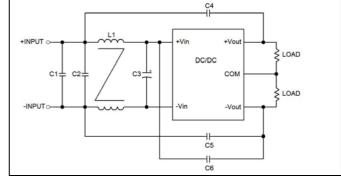
Performance criterion A: The device shows normal operation behavior within the defined limits.

Note 1) Burst and surge tests were performed with the following additional external components:

For 24V input models: 2 pcs. of electrolytic capacitor (NCC KY series, 220µF/100V) and a TVS (SMDJ58A, 58V, 3000 Watt

peak pulse power) in parallel.

For 48V input models: 2 pcs. of electrolytic capacitor (NCC KY series, 220µF/100V) and a TVS (SMDJ120A, 120V, 3000


Watt peak pulse power) in parallel.

#### **EMC Emission**

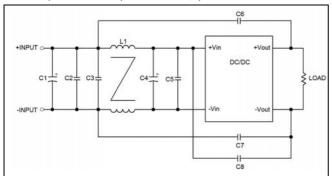
#### Recommended external EMI filter for EN 55032 Class A

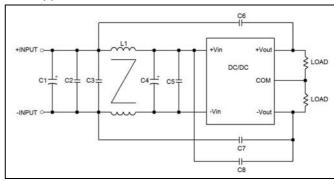
The placement of components and the routing of traces on the pc-board must be carried out according to EMC aspects. If help is needed, please contact our technical support team.





EN 55032 Class A filter for models with a single output voltage


EN 55032 Class A filter for models with a dual output voltages


| вом                      | C1                      | C2                      | С3                        | C4                           | C5                          | C6                          | L1                |
|--------------------------|-------------------------|-------------------------|---------------------------|------------------------------|-----------------------------|-----------------------------|-------------------|
| <b>24V</b> -Input models | -                       | 10μF/50V<br>1210 MLCC   | -                         | 1000pF / Y1<br>TDK CD series | -                           | -                           | 398µH,<br>PMT-177 |
| 48V-Input<br>models      | 2.2μF/100V<br>1210 MLCC | 2.2μF/100V<br>1210 MLCC | 100µF/100V<br>Rubycon ZLH | 330pF / Y1<br>TDK CD series  | 680pF / Y1<br>TDK CD series | 330pF / Y1<br>TDK CD series | 398µH,<br>PMT-177 |



#### Recommended external EMI filter for EN 55032 Class B

The placement of components and the routing of traces on the pc-board must be carried out according to EMC aspects. If help is needed, please contact our technical support team.





EN 55032 Class B filter for models with a single output voltage

EN 55032 Class B filter for models with a dual output voltages

| вом                      | C1                   | C2                      | С3                      | C4                           | C5                      | C6                             | C7                             | C8                            | L1                |
|--------------------------|----------------------|-------------------------|-------------------------|------------------------------|-------------------------|--------------------------------|--------------------------------|-------------------------------|-------------------|
| <b>24V</b> -Input models | -                    | -                       | 10μF/50V<br>1210 MLCC   | 270µF/50V<br>Rubycon<br>ZLH  | -                       | 1000pF/ Y1<br>TDK<br>CD series | 470pF/ Y1<br>TDK<br>CD series  | 680pF/ Y1<br>TDK<br>CD series | 398µH,<br>PMT-177 |
| <b>48V</b> -Input models | 220µF/100V<br>NCC KY | 2.2μF/100V<br>1210 MLCC | 2.2µF/100V<br>1210 MLCC | 100µF/100V<br>Rubycon<br>ZLH | 2.2μF/100V<br>1210 MLCC | 1000pF/ Y1<br>TDK<br>CD series | 1000pF/ Y1<br>TDK<br>CD series | 680pF/ Y1<br>TDK<br>CD series | 398µH,<br>PMT-177 |

## **Switching Frequency**

| Main converter | Min. | 225kHz | Fixed frequency |
|----------------|------|--------|-----------------|
|                | Тур. | 250kHz |                 |
|                | Max. | 275kHz |                 |

# 16. REMOTE ON/OFF FUNCTION

The device is equipped with a remote ON/OFF function to turn the output ON or OFF.

Two logics are possible. With the positive logic (standard version), the output switches OFF as soon as pin 2 (-Vin) and pin 3 (RC) are linked or a voltage of less than 1.2V is present.

The optionally available negative logic (option -N) is exactly the vice versa. Here the output switches ON as soon as pin 2 (-Vin) and pin 3 (RC) are linked or a voltage of less than 1.2V is present.


The RC-input is a sink input, which requires a minimal current of 0.5mA to be activated. The maximal allowed voltage (open circuit voltage) for this pin is 12Vdc.

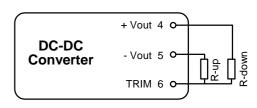
The input current in remote OFF mode is 3mA.

## Positive logic (standard)

Converter ON: open or 3-12V Converter FF: closed or 0-1.2V

Negative logic (option -N) Converter ON: closed or 0-1.2V Converter FF: open or 3-12V








# 17. OUTPUT VOLTAGE ADJUSTMENT

For models with only one output, the output voltage can be adjusted in the range of  $\pm 10\%$  (3.3V, 5V, 12V and 48V) or -10%/+20% (15V and 24V).

To increase the output voltage, connect an external resistor between the TRIM-Pin and the negative output voltage (-Vout) and to decrease the voltage, connect the resistor between the TRIM-Pin and the positive output voltage (+Vout).



Choose a resistor with at least 1/8W of rated power.

#### Resistor values for adjusting the 3.3V output model (adjustment range ±10%):

| Output (V)      | 2.97 | 3.036 | 3.102 | 3.168 | 3.234 | 3.3V | 3.366 | 3.432 | 3.498 | 3.564 | 3.630 |
|-----------------|------|-------|-------|-------|-------|------|-------|-------|-------|-------|-------|
| R-up $(\Omega)$ | -    | -     | -     | -     | -     | -    | 21758 | 8966  | 4325  | 1927  | 462   |
| R-down (Ω)      | 715  | 2639  | 5841  | 12227 | 31256 | -    | -     | -     | -     | -     | -     |

#### Resistor values for adjusting the 5V output model (adjustment range ±10%):

| Output (V)      | 4.5 | 4.6  | 4.7  | 4.8  | 4.9   | 5V | 5.1   | 5.2  | 5.3  | 5.4  | 5.5 |
|-----------------|-----|------|------|------|-------|----|-------|------|------|------|-----|
| <b>R-up</b> (Ω) | -   | -    | -    | -    | -     | -  | 16244 | 6483 | 3198 | 1550 | 559 |
| R-down (Ω)      | 656 | 1903 | 3984 | 8162 | 20817 | -  | -     | -    | -    | -    | -   |

## Resistor values for adjusting the 12V output model (adjustment range ±10%):

| Output (V)        | 10.8 | 11.04 | 11.28 | 11.52 | 11.76  | 12V | 12.24  | 12.48 | 12.72 | 12.96 | 13.2 |
|-------------------|------|-------|-------|-------|--------|-----|--------|-------|-------|-------|------|
| <b>R-up</b> (Ω)   | -    | -     | -     | -     | -      | -   | 172175 | 66591 | 32068 | 14929 | 4685 |
| R-down $(\Omega)$ | 5157 | 17639 | 38371 | 79573 | 201116 | -   | -      | -     | -     | -     | -    |

# Resistor values for adjusting the 15V output model (adjustment range -10%/+20%):

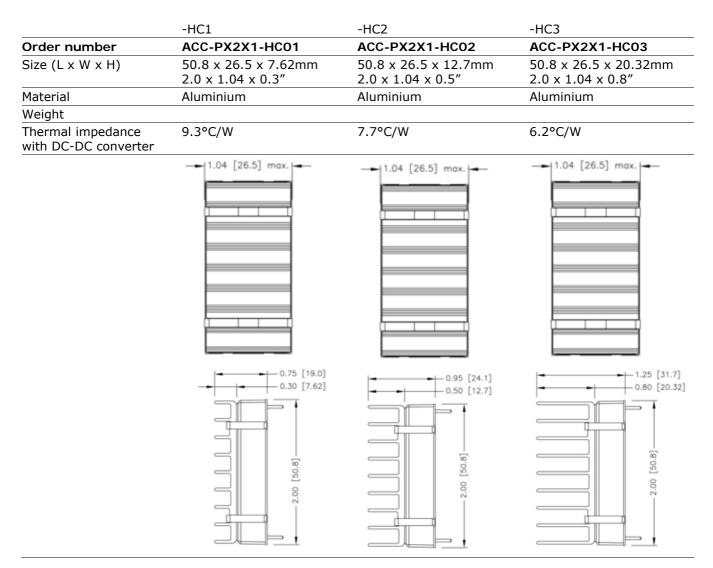
| Output (V)      | 13.5 | 13.8  | 14.1  | 14.4  | 14.7   | 15V | 15.6  | 16.2  | 16.8  | 17.4 | 18   |
|-----------------|------|-------|-------|-------|--------|-----|-------|-------|-------|------|------|
| <b>R-up</b> (Ω) | -    | -     | -     | -     | -      | -   | 89445 | 34820 | 16568 | 7434 | 1951 |
| R-down (0)      | 3916 | 11826 | 25055 | 51685 | 132978 | _   | _     | _     | _     | _    | _    |

#### Resistor values for adjusting the 24V output model (adjustment range -10%/+20%):

| Output (V)      | 21.6 | 22.08 | 22.56 | 23.04  | 23.52  | 24V | 24.96  | 25.92 | 26.88 | 27.84 | 28.8 |
|-----------------|------|-------|-------|--------|--------|-----|--------|-------|-------|-------|------|
| <b>R-up</b> (Ω) | -    | -     | -     | -      | -      | -   | 216605 | 83329 | 38099 | 15330 | 1619 |
| R-down (Ω)      | 6454 | 26282 | 59383 | 125790 | 326672 | -   | -      | -     | -     | -     | -    |

#### Resistor values for adjusting the 48V output model (adjustment range ±10%):

| Output (V)      | 43.2 | 44.16 | 45.12 | 46.08  | 47.04  | 48V | 48.96  | 49.92 | 50.88 | 51.84 | 52.80 |
|-----------------|------|-------|-------|--------|--------|-----|--------|-------|-------|-------|-------|
| <b>R-up</b> (Ω) | -    | -     | -     | -      | -      | -   | 226403 | 86042 | 40910 | 18642 | 5376  |
| R-down (Ω)      | 5798 | 21811 | 48413 | 101292 | 257390 | -   | -      | -     | -     | -     | -     |


# 18. ACCESSORY - HEATSINK KITS



Heatsink kits can be ordered separately and mounted on the converter by means of 2 clips. The heatsink must be installed before the converter is mounted on the pc-board.

The DC-DC converters can also be purchased with pre-mounted heatsinks. For this purpose, please add the suffix -HC1, -HC2 or -HC3 to the end of the part number of the DC-DC converter.

The heatsink kit includes the heatsink, two clips and a thermal pad which is already pasted on the bottom of the heatsink.



# 19. CLEANING PROCESS AND SOLDERING PROFILE

#### **Cleaning Agents**

| Cleaning Method | Classification | Cleaning Agents         |  |  |  |
|-----------------|----------------|-------------------------|--|--|--|
| Ultrasonic wave | Water type     | Deionized water (DI)    |  |  |  |
| Oltrasonic wave | Solvent type   | Isopropyl Alcohol (IPA) |  |  |  |

#### Cleaning process

PWB cooling prior to cleaning

Power modules and their associated application PWB assemblies should not be wash-cleaned after soldering until the power modules have had an opportunity to cool to within the cleaning solution temperature. This will prevent vacuum absorption of the cleaning liquid into the module between the pins and the potting during cooling.

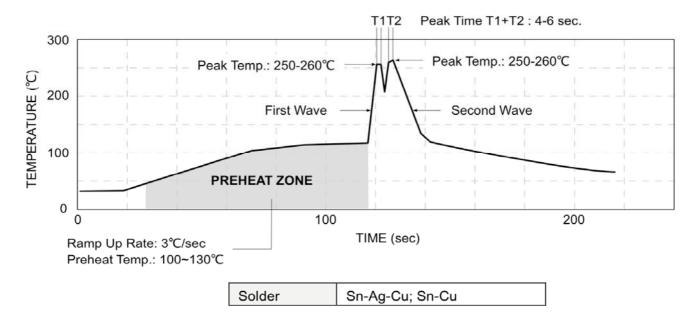
\*Note: In general, the liquid temperature shall be less than 60°C

#### Cleaning process

In aqueous cleaning, it is preferred to have an in-line cleaner system consisting of several cleaning stages (prewash , wash, rinse, final rinse, and drying). Deionized water is recommended for aqueous cleaning; the minimum resistivity level is  $1M\Omega$ -cm. Tap-water quality varies per region in terms of hardness, chloride, and solid contents; therefore, the use of tap water is not recommended for aqueous cleaning.

The total time of ultrasonic wave shall be less than 3 minutes.

#### Drying


After cleaning, dry converters enough to assure that the moisture and other potential foreign contaminants are driven out. Recommended baking conditions:

- When no aluminium electrolytic capacitors applied in products: 100°C for 45 minutes.
- When aluminium electrolytic capacitors applied in products: 80°C for 2 hours.

#### Product Post-wash external appearance

The marking or date-code may fade or disappear after cleaning but performance will not change.

## Lead free wave soldering profile

