Tech Library
Applications & Cases
Dec. 2020
[Application Note]
With the spread of cloud computing and smartphones and the launch of 5G in 2020, the amount of data that moves on the internet is increasing as high-volume video and game data is added to existing documents, images, and sound data.
In addition, technologies are evolving, exemplified by AI, and a digital transformation (DX) is taking place as a result of the use of big data and the internet of things (IoT). To support these advances, however, large numbers of high-performance servers that can process large volumes of data will be needed. In conjunction with the increased performance of processors and various types of ICs, higher clock speeds of power supply ICs on server boards, high current power saving, miniaturization, noise countermeasures in data lines, and surge countermeasures have become urgent issues. Here, we introduce TDK products for addressing and solving these problems including the VLBU series of ferrite power inductors compatible with the high-efficiency needs of VR13 and VR14 applications, the FS series of DC-DC converters with embedded μPOL™, solutions using the ALT series of pulse transformers and ALC series of common mode filters and chokes, and chip varistors and ceramic transient voltage suppressors used for surge protection.
With the spread of cloud computing and smartphones and the launch of 5G in 2020, the amount of data that moves on the internet is increasing as high-volume video and game data is added to existing documents, images, and sound data.
In addition, technologies are evolving, exemplified by AI, and a digital transformation (DX) is taking place as a result of the use of big data and the internet of things (IoT). To support these advances, however, large numbers of high-performance servers that can process large volumes of data will be needed. In conjunction with the increased performance of processors and various types of ICs, higher clock speeds of power supply ICs on server boards, high current power saving, miniaturization, noise countermeasures in data lines, and surge countermeasures have become urgent issues. Here, we introduce TDK products for addressing and solving these problems including the VLBU series of ferrite power inductors compatible with the high-efficiency needs of VR13 and VR14 applications, the FS series of DC-DC converters with embedded μPOL™, solutions using the ALT series of pulse transformers and ALC series of common mode filters and chokes, and chip varistors and ceramic transient voltage suppressors used for surge protection.
Solution Guides
Nov. 2020
[Solution Guide]
NFC is an abbreviation of Near Field Communication; it is a type of short-range wireless communications.
NFC is a function that can perform data communications and authentication when two NFC-compatible devices are brought close together, and adoption in smart phones has been growing rapidly in recent years.
Increased use in peripheral devices including wearable terminals, such as smart watches, has also been observed.
NFC is used in many situations including cashless payment and authentication of connections with peripheral devices, and it is expected to be used for even more diverse applications as we move towards a touchless society.
This article introduces the main components used in NFC circuits: NFC antenna, magnetic sheet, LC filter inductor, single-end circuit balun, and electric double-layer capacitor (EDLC/supercapacitor).
NFC is an abbreviation of Near Field Communication; it is a type of short-range wireless communications.
NFC is a function that can perform data communications and authentication when two NFC-compatible devices are brought close together, and adoption in smart phones has been growing rapidly in recent years.
Increased use in peripheral devices including wearable terminals, such as smart watches, has also been observed.
NFC is used in many situations including cashless payment and authentication of connections with peripheral devices, and it is expected to be used for even more diverse applications as we move towards a touchless society.
This article introduces the main components used in NFC circuits: NFC antenna, magnetic sheet, LC filter inductor, single-end circuit balun, and electric double-layer capacitor (EDLC/supercapacitor).
Products & Technologies
May. 2020
[Product Overview]
The high precision of piezoresistive sensors and their ability to measure absolute, gauge and differential pressure allow their versatile use in a wide range of applications.
For industrial equipment and machineries the information provided by the pressure sensors can be used to operate hydraulic or pneumatic equipment in the most effective way but furthermore connect to the new Industry 4.0 standards.
The increasing requirements in automotive for fuel efficiency and reduction of harmful emission demand for long-term stable and highly accurate sensors. Besides the media resistance, some of the application require the pressure sensors to be freeze resistant but most important the sensors need to provide a reliable signal over lifetime.
All applications place increasingly demanding requirements on the distinctive characteristics of the pressure dies and call for specific design features already on the die level. The TDK pressure sensors portfolio has been developed with a strong focus on increased sensitivity and high performance with a smaller die size. In addition, particular attention is paid to specific features for media resistance and easy process ability.
The high precision of piezoresistive sensors and their ability to measure absolute, gauge and differential pressure allow their versatile use in a wide range of applications.
For industrial equipment and machineries the information provided by the pressure sensors can be used to operate hydraulic or pneumatic equipment in the most effective way but furthermore connect to the new Industry 4.0 standards.
The increasing requirements in automotive for fuel efficiency and reduction of harmful emission demand for long-term stable and highly accurate sensors. Besides the media resistance, some of the application require the pressure sensors to be freeze resistant but most important the sensors need to provide a reliable signal over lifetime.
All applications place increasingly demanding requirements on the distinctive characteristics of the pressure dies and call for specific design features already on the die level. The TDK pressure sensors portfolio has been developed with a strong focus on increased sensitivity and high performance with a smaller die size. In addition, particular attention is paid to specific features for media resistance and easy process ability.