Tech Library
Applications & Cases
Dec. 2020
[Application Note]
With the spread of cloud computing and smartphones and the launch of 5G in 2020, the amount of data that moves on the internet is increasing as high-volume video and game data is added to existing documents, images, and sound data.
In addition, technologies are evolving, exemplified by AI, and a digital transformation (DX) is taking place as a result of the use of big data and the internet of things (IoT). To support these advances, however, large numbers of high-performance servers that can process large volumes of data will be needed. In conjunction with the increased performance of processors and various types of ICs, higher clock speeds of power supply ICs on server boards, high current power saving, miniaturization, noise countermeasures in data lines, and surge countermeasures have become urgent issues. Here, we introduce TDK products for addressing and solving these problems including the VLBU series of ferrite power inductors compatible with the high-efficiency needs of VR13 and VR14 applications, the FS series of DC-DC converters with embedded μPOL™, solutions using the ALT series of pulse transformers and ACM series of common mode filters and chokes, and chip varistors and ceramic transient voltage suppressors used for surge protection.
With the spread of cloud computing and smartphones and the launch of 5G in 2020, the amount of data that moves on the internet is increasing as high-volume video and game data is added to existing documents, images, and sound data.
In addition, technologies are evolving, exemplified by AI, and a digital transformation (DX) is taking place as a result of the use of big data and the internet of things (IoT). To support these advances, however, large numbers of high-performance servers that can process large volumes of data will be needed. In conjunction with the increased performance of processors and various types of ICs, higher clock speeds of power supply ICs on server boards, high current power saving, miniaturization, noise countermeasures in data lines, and surge countermeasures have become urgent issues. Here, we introduce TDK products for addressing and solving these problems including the VLBU series of ferrite power inductors compatible with the high-efficiency needs of VR13 and VR14 applications, the FS series of DC-DC converters with embedded μPOL™, solutions using the ALT series of pulse transformers and ACM series of common mode filters and chokes, and chip varistors and ceramic transient voltage suppressors used for surge protection.
Solution Guides
Dec. 2019
[Solution Guide]
Automakers are incorporating more multifunctional capabilities into automobiles as they seek to make autonomous driving a reality. Electronic control units (ECUs) for advanced driver assistance systems are consuming more power, and the latest trend is toward ECU integration—installing an ECU close to the engine room or other working part.
For these reasons, the number of electronic devices and components built into cars these days is on the rise, and the reliability of the electronic components used in the electronics is having a growing impact on the reliability of the vehicle overall.
Automakers are incorporating more multifunctional capabilities into automobiles as they seek to make autonomous driving a reality. Electronic control units (ECUs) for advanced driver assistance systems are consuming more power, and the latest trend is toward ECU integration—installing an ECU close to the engine room or other working part.
For these reasons, the number of electronic devices and components built into cars these days is on the rise, and the reliability of the electronic components used in the electronics is having a growing impact on the reliability of the vehicle overall.
Solution Guides
Jan. 2019
[Solution Guide]
If communication waves from cellular or Wi-Fi sources interfere with and intrude into microphone lines for smartphones or other devices, some of their components will become noise components in audible bands known as "TDMA noise", and may be emitted from speakers as unpleasant sound. Countermeasures which implement combinations of TDK's noise suppression filters and ESD Notch Filters can not only demonstrate outstanding effectiveness at suppressing TDMA noise with no effect on signals, but can also provide a variety of other benefits such as improving cellular or Wi-Fi communication reception sensitivity, and providing countermeasures against ESD (electrostatic discharge).
If communication waves from cellular or Wi-Fi sources interfere with and intrude into microphone lines for smartphones or other devices, some of their components will become noise components in audible bands known as "TDMA noise", and may be emitted from speakers as unpleasant sound. Countermeasures which implement combinations of TDK's noise suppression filters and ESD Notch Filters can not only demonstrate outstanding effectiveness at suppressing TDMA noise with no effect on signals, but can also provide a variety of other benefits such as improving cellular or Wi-Fi communication reception sensitivity, and providing countermeasures against ESD (electrostatic discharge).