Tech Library
Applications & Cases
Feb. 2023
【How electrification and autonomous driving are expanding the role of sensor technologies within automotive designs】

The automotive production landscape is changing. The proliferation of electronic devices and sensors in modern car design has grown exponentially in recent years. It will expand further as the industry continues its transition toward e-mobility and autonomous driving. The core technologies featured in electric vehicles expand the realm into which sensors are deployed. Also, combustion engine vehicle gas sensors have shifted away from exhaust gas monitoring toward internal air quality (IAQ) measurement.
【How electrification and autonomous driving are expanding the role of sensor technologies within automotive designs】

The automotive production landscape is changing. The proliferation of electronic devices and sensors in modern car design has grown exponentially in recent years. It will expand further as the industry continues its transition toward e-mobility and autonomous driving. The core technologies featured in electric vehicles expand the realm into which sensors are deployed. Also, combustion engine vehicle gas sensors have shifted away from exhaust gas monitoring toward internal air quality (IAQ) measurement.
Applications & Cases
Nov. 2022
[Application Note]
TDK offers a full suite of sensors that are perfectly suited for drones of all types from consumer/prosumer models to industrial units.
 
In just a few years, drones have become indispensable in one application after another, including such diverse areas as agriculture, real estate and cinematography. For all this success, drones still have almost unlimited potential given their suitability for a wide variety of uses including delivery, inspection, search & rescue, monitoring, and mapping, to name just a few.
 
Fundamental to drone utility is sensor technology. Drones rely on diverse sets of sensors for two broad purposes. First for their own functionality, notably flight and navigation, and second, for their ancillary capabilities – cameras for vision, motion detectors to sense activity, heat sensors to detect temperature, and so on.
TDK offers a full suite of sensors that are perfectly suited for drones of all types from consumer/prosumer models to industrial units.
 
In just a few years, drones have become indispensable in one application after another, including such diverse areas as agriculture, real estate and cinematography. For all this success, drones still have almost unlimited potential given their suitability for a wide variety of uses including delivery, inspection, search & rescue, monitoring, and mapping, to name just a few.
 
Fundamental to drone utility is sensor technology. Drones rely on diverse sets of sensors for two broad purposes. First for their own functionality, notably flight and navigation, and second, for their ancillary capabilities – cameras for vision, motion detectors to sense activity, heat sensors to detect temperature, and so on.
Applications & Cases
Aug. 2022
[Application Note]
Service robots play an increasingly vital role in society, from transportation and warehouse logistics to home entertainment and security. Regardless of their application, they need to sense changes in their surroundings in real-time to ensure safety while providing a positive user experience. To illustrate how various sensor technologies from TDK’s SmartSensor family can be applied in service robots, this article focuses on a robotic vacuum cleaner (RVC).
Early versions of robotic vacuums had very little intelligence, randomly bumping their way around the home and sometimes missing areas as they did not know where they had been. Often, they would unwittingly become trapped or run out of charge mid-sweep. And, as their dust box is comparatively small to a regular vacuum cleaner, if full, they could be sweeping but not collecting anything up. Over the years, with the innovative use of sensors and motor controllers, vacuum cleaning robots have become much smarter, overcoming these issues.
Service robots play an increasingly vital role in society, from transportation and warehouse logistics to home entertainment and security. Regardless of their application, they need to sense changes in their surroundings in real-time to ensure safety while providing a positive user experience. To illustrate how various sensor technologies from TDK’s SmartSensor family can be applied in service robots, this article focuses on a robotic vacuum cleaner (RVC).
Early versions of robotic vacuums had very little intelligence, randomly bumping their way around the home and sometimes missing areas as they did not know where they had been. Often, they would unwittingly become trapped or run out of charge mid-sweep. And, as their dust box is comparatively small to a regular vacuum cleaner, if full, they could be sweeping but not collecting anything up. Over the years, with the innovative use of sensors and motor controllers, vacuum cleaning robots have become much smarter, overcoming these issues.
Applications & Cases
Dec. 2020
[Application Note]
With the spread of cloud computing and smartphones and the launch of 5G in 2020, the amount of data that moves on the internet is increasing as high-volume video and game data is added to existing documents, images, and sound data.
In addition, technologies are evolving, exemplified by AI, and a digital transformation (DX) is taking place as a result of the use of big data and the internet of things (IoT). To support these advances, however, large numbers of high-performance servers that can process large volumes of data will be needed. In conjunction with the increased performance of processors and various types of ICs, higher clock speeds of power supply ICs on server boards, high current power saving, miniaturization, noise countermeasures in data lines, and surge countermeasures have become urgent issues. Here, we introduce TDK products for addressing and solving these problems including the VLBU series of ferrite power inductors compatible with the high-efficiency needs of VR13 and VR14 applications, the FS series of DC-DC converters with embedded μPOL™, solutions using the ALT series of pulse transformers and ALC series of common mode filters and chokes, and chip varistors and ceramic transient voltage suppressors used for surge protection.
With the spread of cloud computing and smartphones and the launch of 5G in 2020, the amount of data that moves on the internet is increasing as high-volume video and game data is added to existing documents, images, and sound data.
In addition, technologies are evolving, exemplified by AI, and a digital transformation (DX) is taking place as a result of the use of big data and the internet of things (IoT). To support these advances, however, large numbers of high-performance servers that can process large volumes of data will be needed. In conjunction with the increased performance of processors and various types of ICs, higher clock speeds of power supply ICs on server boards, high current power saving, miniaturization, noise countermeasures in data lines, and surge countermeasures have become urgent issues. Here, we introduce TDK products for addressing and solving these problems including the VLBU series of ferrite power inductors compatible with the high-efficiency needs of VR13 and VR14 applications, the FS series of DC-DC converters with embedded μPOL™, solutions using the ALT series of pulse transformers and ALC series of common mode filters and chokes, and chip varistors and ceramic transient voltage suppressors used for surge protection.
Applications & Cases
Mar. 2020
[Application Note]
The evolution of sensing technology and communication network contribute to the realization of an Autonomous driving society and its growth. Ultrasonic parking assistant is a key sensor for automated driving and parking functions. Ultrasonic parking sensors were in use in Europe long before debate on automated driving became active. TDK has for many years supplied Piezo Disks and ultrasonic driver transformers for use with ultrasonic parking sensors. TDK also developed a multilayer ceramic chip capacitor that exhibits attenuating capacitance (ZL characteristics) under high-temperature environments that is suitable for resonant circuits with Piezo Disk. This article presents Piezo Disk, ultrasonic driver transformers, and MLCC with ZL characteristics.
The evolution of sensing technology and communication network contribute to the realization of an Autonomous driving society and its growth. Ultrasonic parking assistant is a key sensor for automated driving and parking functions. Ultrasonic parking sensors were in use in Europe long before debate on automated driving became active. TDK has for many years supplied Piezo Disks and ultrasonic driver transformers for use with ultrasonic parking sensors. TDK also developed a multilayer ceramic chip capacitor that exhibits attenuating capacitance (ZL characteristics) under high-temperature environments that is suitable for resonant circuits with Piezo Disk. This article presents Piezo Disk, ultrasonic driver transformers, and MLCC with ZL characteristics.
Applications & Cases
Nov. 2019
[Application Note]
The evolution of sensing technology and communication network contribute to the realization of Autonomous driving society and its growth. In association with full-scale expansion of the "5G service" next-generation wireless communication standard, great attention is being placed on wireless technology intended for "vehicle-to-vehicle and infrastructure-to-vehicle communication" (V2X) to communicate data between automobiles and their surroundings. While the TDK Group can offer a lineup of various electronic components for V2X, this article introduces a selection of IMU (Inertial Measurement Unit) and high-frequency products for Telematics Control Units (TCUs).
The evolution of sensing technology and communication network contribute to the realization of Autonomous driving society and its growth. In association with full-scale expansion of the "5G service" next-generation wireless communication standard, great attention is being placed on wireless technology intended for "vehicle-to-vehicle and infrastructure-to-vehicle communication" (V2X) to communicate data between automobiles and their surroundings. While the TDK Group can offer a lineup of various electronic components for V2X, this article introduces a selection of IMU (Inertial Measurement Unit) and high-frequency products for Telematics Control Units (TCUs).