テックライブラリー
ソリューションガイド
2020年11月
[ソリューションガイド]
NFCとは、Near Field Communicationの略で、近距離無線通信の1つです。
NFCに対応した機器同士を近づけることで、データ通信や認証を行うことができる機能で、近年スマートフォンへの搭載が急速に進んでおります。
また、スマートウォッチのようなウェアラブル端末など、周辺機器への搭載も広がりを見せています。
キャッシュレス決済や、周辺機器との接続認証の場面で多く使用されているほか、タッチレス社会の実現へ向け、より多様な用途での活用が期待されています。
本記事ではNFC回路で使用される主な部品(NFCアンテナ、磁性シート、LCフィルタ用インダクタ、シングルエンド回路用バラン、電気二重層キャパシタ(EDLC/スーパーキャパシタ))についてご紹介致します。
NFCとは、Near Field Communicationの略で、近距離無線通信の1つです。
NFCに対応した機器同士を近づけることで、データ通信や認証を行うことができる機能で、近年スマートフォンへの搭載が急速に進んでおります。
また、スマートウォッチのようなウェアラブル端末など、周辺機器への搭載も広がりを見せています。
キャッシュレス決済や、周辺機器との接続認証の場面で多く使用されているほか、タッチレス社会の実現へ向け、より多様な用途での活用が期待されています。
本記事ではNFC回路で使用される主な部品(NFCアンテナ、磁性シート、LCフィルタ用インダクタ、シングルエンド回路用バラン、電気二重層キャパシタ(EDLC/スーパーキャパシタ))についてご紹介致します。
ソリューションガイド
2019年01月
[ソリューションガイド]
スマートフォンなどのマイクロフォンラインに、セルラーやWiFiの通信電波が干渉して侵入すると、その一部はTDMAノイズと呼ばれる可聴帯域のノイズ成分となり、スピーカーから不快な雑音として聞こえる場合があります。TDKのノイズサプレッションフィルタとESD保護機能付きノッチフィルタの組み合わせによる対策は、信号に影響を与えることなく、TDMAノイズの抑制に絶大な効果を発揮するばかりでなく、セルラーやWiFi通信の受信感度の改善、ESD(静電気放電)対策など、さまざまなメリットをもたらします。
スマートフォンなどのマイクロフォンラインに、セルラーやWiFiの通信電波が干渉して侵入すると、その一部はTDMAノイズと呼ばれる可聴帯域のノイズ成分となり、スピーカーから不快な雑音として聞こえる場合があります。TDKのノイズサプレッションフィルタとESD保護機能付きノッチフィルタの組み合わせによる対策は、信号に影響を与えることなく、TDMAノイズの抑制に絶大な効果を発揮するばかりでなく、セルラーやWiFi通信の受信感度の改善、ESD(静電気放電)対策など、さまざまなメリットをもたらします。
ソリューションガイド
2017年12月
[ソリューションガイド]
材料技術や積層技術などの高度化により、MLCC(積層セラミックチップコンデンサ)のさらなる小型化や大容量化が図られる中で、近年、温度補償用(種類1)のMLCCの耐電圧と静電容量の拡大も著しく進んでいます。
TDKが開発したC0G特性・高耐圧MLCCは、C0G特性で1000Vの耐電圧を業界最高クラスの広い静電容量範囲(1nF~33nF)で実現した製品です。共振回路などの用途では、従来、フィルムコンデンサが使用されてきた分野においても、MLCCへの置き換えが可能です。
このC0G特性・高耐圧MLCCの特長とともに、EVのワイヤレス給電システムにおけるフィルムコンデンサからの置き換えと、そのメリットなどを中心に解説いたします。
材料技術や積層技術などの高度化により、MLCC(積層セラミックチップコンデンサ)のさらなる小型化や大容量化が図られる中で、近年、温度補償用(種類1)のMLCCの耐電圧と静電容量の拡大も著しく進んでいます。
TDKが開発したC0G特性・高耐圧MLCCは、C0G特性で1000Vの耐電圧を業界最高クラスの広い静電容量範囲(1nF~33nF)で実現した製品です。共振回路などの用途では、従来、フィルムコンデンサが使用されてきた分野においても、MLCCへの置き換えが可能です。
このC0G特性・高耐圧MLCCの特長とともに、EVのワイヤレス給電システムにおけるフィルムコンデンサからの置き換えと、そのメリットなどを中心に解説いたします。
ソリューションガイド
2017年12月
[ソリューションガイド]
MLCC(積層セラミックチップコンデンサ)の大容量化や高耐圧化などにより、従来、主にフィルムコンデンサが使われていた分野においても、MLCCへの置き換えが可能になっています。とりわけ温度特性にすぐれる温度補償用(種類1)C0G特性のMLCCは、高精度・高信頼性が求められる用途において、大幅な省スペースとともに、さまざまな置き換えメリットをもたらします。
C0G特性は、-55~+125°Cの温度範囲において、温度係数は0ppm/°C、許容差は±30ppm/°Cというきわめて厳格な規格です。TDKのC0G特性・高耐圧MLCCは、C0G特性で1000Vの耐電圧を業界最高クラスの広い静電容量範囲(1nF~33nF)で実現した製品です。ソリューションガイド「フィルムコンデンサからMLCCへの置き換えガイド Vol.2」では、EVのワイヤレス給電システムについて解説しましたが、当面、EVの普及の牽引役になるのは、家庭用AC電源からEV(BEV/PHV)の駆動用バッテリを充電するプラグイン方式であることはまちがいありません。
そこで、プラグイン充電システムの車載充電器(OBC:オンボードチャージャー)におけるフィルムコンデンサからMLCCへの置き換えと、そのメリットなどを中心に解説いたします。
MLCC(積層セラミックチップコンデンサ)の大容量化や高耐圧化などにより、従来、主にフィルムコンデンサが使われていた分野においても、MLCCへの置き換えが可能になっています。とりわけ温度特性にすぐれる温度補償用(種類1)C0G特性のMLCCは、高精度・高信頼性が求められる用途において、大幅な省スペースとともに、さまざまな置き換えメリットをもたらします。
C0G特性は、-55~+125°Cの温度範囲において、温度係数は0ppm/°C、許容差は±30ppm/°Cというきわめて厳格な規格です。TDKのC0G特性・高耐圧MLCCは、C0G特性で1000Vの耐電圧を業界最高クラスの広い静電容量範囲(1nF~33nF)で実現した製品です。ソリューションガイド「フィルムコンデンサからMLCCへの置き換えガイド Vol.2」では、EVのワイヤレス給電システムについて解説しましたが、当面、EVの普及の牽引役になるのは、家庭用AC電源からEV(BEV/PHV)の駆動用バッテリを充電するプラグイン方式であることはまちがいありません。
そこで、プラグイン充電システムの車載充電器(OBC:オンボードチャージャー)におけるフィルムコンデンサからMLCCへの置き換えと、そのメリットなどを中心に解説いたします。