Tech Library
Applications & Cases
[Application Note]
With the increasing market for electrified vehicles (EVs), the demand for on-board chargers (OBCs) is growing fast. OBCs open up the possibility to charge the car not only at fast-charging DC stations but also with AC sources in a reasonable time. Such systems are currently going up to 22 kW with operating voltages up to 800 V. The function of the OBC is to convert the AC voltage from an external source to a specific DC voltage that is based on the requirements of the battery management system. By this, a battery-saving and fast charging process can be reached. Especially in remote areas without sufficient fast DC charging infrastructure, OBCs are essential to make EVs more attractive.
Due to the complexity of such systems, the OBC needs a certain bulk capacitance to stabilize the DC voltage that is charging the battery. Aluminum electrolytic capacitors are an attractive solution here since they can fulfill the key requirements, such as high voltage ratings of up to 500 V, large capacitance of up to 820 µF and high ripple current capabilities at an operating temperature range of -40 °C to 105 °C.
With the increasing market for electrified vehicles (EVs), the demand for on-board chargers (OBCs) is growing fast. OBCs open up the possibility to charge the car not only at fast-charging DC stations but also with AC sources in a reasonable time. Such systems are currently going up to 22 kW with operating voltages up to 800 V. The function of the OBC is to convert the AC voltage from an external source to a specific DC voltage that is based on the requirements of the battery management system. By this, a battery-saving and fast charging process can be reached. Especially in remote areas without sufficient fast DC charging infrastructure, OBCs are essential to make EVs more attractive.
Due to the complexity of such systems, the OBC needs a certain bulk capacitance to stabilize the DC voltage that is charging the battery. Aluminum electrolytic capacitors are an attractive solution here since they can fulfill the key requirements, such as high voltage ratings of up to 500 V, large capacitance of up to 820 µF and high ripple current capabilities at an operating temperature range of -40 °C to 105 °C.
Applications & Cases
[Application Note]
Universal Serial Bus (USB) is a well-established industry standard that has been in place for more than 20 years, defining the serial communication protocol and the connectors, cables, and chargers for battery-powered rechargeable portable devices. With each updated version of the USB, protocol data rates have continuously increased over the years. Today, we have USB4® protocol, with up to 40 Gbps data rates. Followed by the recently released USB Power Delivery (PD) charging protocol. This development meant a reduction in the time required for charging any peripheral device via USB plug, even though the battery capacities of peripheral devices have been increasing. The latest market developments pushing the technology trends to support requirements have been led by manufacturers’ offerings, followed by attempts to standardize the equipment used. One of the widely used solutions that combines the above requirements is the USB Type-C® connector, which supports up to 100 W power supply option.
Universal Serial Bus (USB) is a well-established industry standard that has been in place for more than 20 years, defining the serial communication protocol and the connectors, cables, and chargers for battery-powered rechargeable portable devices. With each updated version of the USB, protocol data rates have continuously increased over the years. Today, we have USB4® protocol, with up to 40 Gbps data rates. Followed by the recently released USB Power Delivery (PD) charging protocol. This development meant a reduction in the time required for charging any peripheral device via USB plug, even though the battery capacities of peripheral devices have been increasing. The latest market developments pushing the technology trends to support requirements have been led by manufacturers’ offerings, followed by attempts to standardize the equipment used. One of the widely used solutions that combines the above requirements is the USB Type-C® connector, which supports up to 100 W power supply option.
Applications & Cases
【How electrification and autonomous driving are expanding the role of sensor technologies within automotive designs】

The automotive production landscape is changing. The proliferation of electronic devices and sensors in modern car design has grown exponentially in recent years. It will expand further as the industry continues its transition toward e-mobility and autonomous driving. The core technologies featured in electric vehicles expand the realm into which sensors are deployed. Also, combustion engine vehicle gas sensors have shifted away from exhaust gas monitoring toward internal air quality (IAQ) measurement.
【How electrification and autonomous driving are expanding the role of sensor technologies within automotive designs】

The automotive production landscape is changing. The proliferation of electronic devices and sensors in modern car design has grown exponentially in recent years. It will expand further as the industry continues its transition toward e-mobility and autonomous driving. The core technologies featured in electric vehicles expand the realm into which sensors are deployed. Also, combustion engine vehicle gas sensors have shifted away from exhaust gas monitoring toward internal air quality (IAQ) measurement.
Applications & Cases
[Application Note]
While the development of next-generation vehicles for fully automated driving is gaining momentum, vehicle architecture is beginning to undergo major changes. Among them, the automotive network that connects ECUs responsible for advanced driver-assistance system (ADAS) is a very important element.
One particular focus is on automotive Ethernet for automotive networks, with 100BASE-T1 (100 Mbps) and 1000BASE-T1 (1 Gbps) for sensor systems in cameras, radar, and LiDARs. Furthermore, the 10BASE-T1S, a new standard for automotive Ethernet with a transmission speed of 10 Mbps, is gaining more attention.
Sample applications: Possible applications include actuator systems and sensors.
While the development of next-generation vehicles for fully automated driving is gaining momentum, vehicle architecture is beginning to undergo major changes. Among them, the automotive network that connects ECUs responsible for advanced driver-assistance system (ADAS) is a very important element.
One particular focus is on automotive Ethernet for automotive networks, with 100BASE-T1 (100 Mbps) and 1000BASE-T1 (1 Gbps) for sensor systems in cameras, radar, and LiDARs. Furthermore, the 10BASE-T1S, a new standard for automotive Ethernet with a transmission speed of 10 Mbps, is gaining more attention.
Sample applications: Possible applications include actuator systems and sensors.
Applications & Cases
[Application Note]
While smartphones, TWS, and other mobile devices are becoming smaller and more sophisticated, devices and ICs are becoming more vulnerable to electrostatic discharge (ESD), surges, and other types of immunity. These mobile devices are increasingly being hand-held, operated, and worn. Therefore, ESD countermeasures are needed more than ever, while ESD protection components are also increasingly being used to prevent ESD. TDK offers a lineup of chip varistors as components that can protect circuits from ESD. Lastly, using actual devices, this article presents examples of ESD countermeasures using chip varistors for actual failures that occur when ESD enters a device.
While smartphones, TWS, and other mobile devices are becoming smaller and more sophisticated, devices and ICs are becoming more vulnerable to electrostatic discharge (ESD), surges, and other types of immunity. These mobile devices are increasingly being hand-held, operated, and worn. Therefore, ESD countermeasures are needed more than ever, while ESD protection components are also increasingly being used to prevent ESD. TDK offers a lineup of chip varistors as components that can protect circuits from ESD. Lastly, using actual devices, this article presents examples of ESD countermeasures using chip varistors for actual failures that occur when ESD enters a device.